
EITI

FXU 3.0

Framework for eXecutable UML 3.0

Marian Szczykulski under the supervision of Anna Derezińska

2011-01-29

This document describes a process of creating an executable application using the FXU framework

and shows changes introduced in the new version of the tool.

2

1. Goals of document

This document presents changes in Framework for eXecutable UML (FXU), that were

performed as a part of release 3.0. In the next section all new features are listed, as well as

bugs from previous version which have been detected and fixed.

2. FXU 3.0 – release notes

The main feature of the new version of FXU is the possibility of generating additional source

code for stereotypes applied in a UML model. In the previous version of the framework

stereotypes were ignored. FXU was able to read them from the serialized UML model. Hence,

the whole algorithm of reading the model and the architecture of FXU was changed. In order

to interpret stereotypes and generate additional code, the separate components are provided.

One single component is responsible for stereotypes from certain UML profile and there is

another component for another profile, but the FXU is independent from those components.

Therefore, if they are not provided, the FXU is still able to generate C# code, but stereotypes

are just ignored and included as comments. Other important features are new generation

options which allow to configure FXU Runtime Environment’s algorithms in order to

optimize the execution of state machines. All changes are listed in the next subsections.

2.1. New features

• New generation option:

o Priority event queue – there is a possibility to choose priority event queue and

specify priorities for different event types during code generation.

o Events filtration – there is a possibility to choose a filtration option for UML

events during code generation. Thanks to this option, events are not sent to

every state machine in the application, but only to those where these events are

really used.

o “After” event optimization – this option allows to run every “after” event for

a state in one single thread instead of separate threads for every “after” event.

• Plug-in architecture for code generation from stereotypes and tag values – a

dedicated architecture allows to implement and add new components (plug-ins) into

3

the FXU Generator in order to generate C# code from stereotypes and tag values of a

certain UML profile.

• Components for MARTE::Time profile – a component (plug-in) generates additional

C# code for a subset of stereotypes and tag values from MARTE::Time profile.

Moreover, the FXU Runtime Environment was equipped with library that supports the

execution of the code generated by MARTE::Time plug-in.

• Invocation of methods in Main function – the FXU Application Wizard was

equipped with a feature which allows to specify operation (with its parameters) to

invoke in them Main function.

2.2. Other improvements

Apart from the new features described in the previous section some bugs were detected and

fixed. The most important are listed below:

• Considering classes generated from UML signals in the FXU Application Wizard –

the previous version of the FXU Application Wizard does not consider classes

generated from signals in a UML model. Therefore, in some cases, a generated project

does not contain all elements.

• Improved model visualization – a tree which represents a UML model in the FXU

GUI was improved and enriched with new elements in order to visualize the original

UML model more precisely.

• Improved error handling – error situations are described more precisely.

• Adjustment FXU to the UML 2.3 – changes introduced in the UML 2.3 have been

taken into account and implemented in the new version of FXU.

• Optimization of FXU Runtime Environment’s algorithms – the FXU Runtime

Environment was modified in order to create fewer threads and move some time-

consuming computations to the code generation phase.

3. User guide

In this section there is presented

Generator in order to generate

stereotypes and tag values.

3.1. Create an UML model with stereotypes

In the first step, an UML model has to be created.

Architect 7.5.1 has been used

exporting the UML model into

At the beginning, a class diagram

classes: MarteTimedEventTest

class in a package clocks. The second class has

MARTE::Time profile, which tag values are shown in the frame

Moreover the package clocks has a

The SimpleClock class defines

values specify properties of this kind of clock

necessary to create an instance of the class. Therefore

the clocks package is created (

exemplary state machine.

4

there is presented a simple example, which shows how to use

to generate a C# code from an UML model enriched with

UML model with stereotypes

UML model has to be created. In the example IBM Rational Software

has been used, but it is possible to use any CASE tool which supports

model into the UML format of Eclipse (uml 2.1 format)

class diagram has to be created (Figure 1). In the example

MarteTimedEventTest, which has neither operations nor attributes

. The second class has a ClockType stereotyp

, which tag values are shown in the frame in the picture

has a TimedDomain stereotype.

Figure 1. Exemplary class diagram.

class defines a new type of clock. The stereotype ClockType

of this kind of clock. But in order to use this type of clock it is

instance of the class. Therefore, in the next step, an

(Figure 2). Only one object is created and it

simple example, which shows how to use the FXU

UML model enriched with MARTE::Time

IBM Rational Software

tool which supports

(uml 2.1 format).

example there are two

attributes, and SimpleClock

stereotype from the

n the picture below.

ClockType and its tag

But in order to use this type of clock it is

, an object diagram for

 will be used by the

The third part of the UML model is

class (Figure 3). It consists of four simple states.

triggered by a time event which

The first event is generated after 2000 unit

the stereotype TimedEvent. Next events will be

is specified by “every” tag value.

Figure

The created model has to be exported to the UML format of

clicking “File->Export”, selecting “

wizard’s steps. It is importan

frame. Thanks to this, the FXU Generator

and generate appropriate C# code.

5

Figure 2. Exemplary object diagram.

The third part of the UML model is a state machine diagram for the MarteTimedEventTest

of four simple states. The transition between

which has a TimedEvent stereotype from the MARTE::Tim

d after 2000 units of time on a clock specified by “

. Next events will be generated after every 5000 unit

” tag value.

Figure 3. Exemplary state machine diagram.

The created model has to be exported to the UML format of Eclipse. It can be

selecting “UML 2.1 Model” on the “Other” sectio

It is important to select an “Export applied profiles” option

FXU Generator will be able to read all applied profiles in the model

and generate appropriate C# code.

MarteTimedEventTest

etween those states are

MARTE::Time profile.

s of time on a clock specified by “on” tag value of

generated after every 5000 units of time, as it

clipse. It can be done by

” section and following

option in the second

plied profiles in the model

3.2. Launching the FXU Generator

The generator can be launched by

launching the generator, ensure

checking the “FXUGenerator3

In order to load the model click “

your file system.

6

Figure 4. RSA 7.5.1 Export Wizard.

Launching the FXU Generator and loading the UML model

launched by double clicking the “FXUGenerator3.0.jar

ensure yourself that the MARTE::Time plug-

3.0_lib” folder. It should contain the “MarteTime.jar

model click “File->Open” and select a file with the

and loading the UML model

FXUGenerator3.0.jar” file. Before

-in is provided by

MarteTime.jar” file.

a file with the exported model in

Figure

Now, the model is loaded and visualized in a tree

hierarchy in the original UML model

frame at the bottom of the main window

FXU loader has not been able to find files

Default.profile.uml, Deployment.profile.uml

stereotypes from these profiles

7

Figure 5. An UML model loaded to the FXU Generator.

model is loaded and visualized in a tree-like form which represents

UML model (Figure 5). It is important to check logs in

of the main window. There are a few warnings. They indicate that

been able to find files with UML profiles (Standard.profile.uml

Deployment.profile.uml), which are applied in the model. In

s were not used, so warnings can be ignored.

like form which represents the real

It is important to check logs in the result

warnings. They indicate that the

Standard.profile.uml,

in the model. In this case,

8

There is a possibility to choose how detailed the view of the UML model should be by

clicking “View” on menu bar. There are three options possible:

• Simple view – the tree, that represents the UML model, contains only information

about names of classes, state machines and main regions in these state machines.

• Standard view – the tree, that represents the UML model, contains information about

names of classes and theirs operations. Moreover there are detailed information about

every state machine in the model (states, transitions, events, guards, pseudostates).

• Advanced view – apart from information available in standard view, there are also

information about generalization of classes, attributes in classes and stereotypes in

packages, classes and state machines.

3.3. Validating the UML model

In order to perform model validation click “Model->Validate Model”. The dialog window

with a message “Model is valid” should appear. In the result frame, at the bottom of the main

window, additional messages should appear. Apart from messages from the FXU model

loader, described earlier, there is one warning:

WARNING::Parameter

<MarteFunctionalTests::clocks::SimpleClock::indexToValue::value> - Name of the element

is a C# contextual keyword.

It indicates that there is a parameter named “value”, which is a C# keyword. But in this case,

this parameter is a return parameter of an operation SimpleClock::indexToValue and it will

not appear in the generated code. Therefore these warnings can be ignored..

3.4. Generating C# code

In order to generate C# code from the loaded model click “Model->Generate C# Code”. In

the generation window there is a possibility to configure some features of the generated code

such as algorithms for the FXU Runtime Environment, a destination path, default data types or

an application logger configuration. Next four pictures show every tab in the generation

window.

Figure

Figure

9

Figure 6. FXU Generator - general properties.

Figure 7. FXU Generator - default data types.

Figure

Figure

10

Figure 8. FXU Generator - log4net properties.

Figure 9. FXU Generator - algorithm properties.

11

Default values can be used and by clicking the “Generate” button C# code can be generated.

However, sometimes it would be helpful to choose other possibilities. They are listed and

described shortly below.

1) First Tab (General):

• Output directory – indicates a place in the file system where generated C# code

will be stored.

• Overwrite all existing files – if selected, all existing files of the same name in the

output directory will be replaced by new ones.

• Generate FXU Tracer’s version of FXU Runtime Environment – if selected, there

will be application generated with the FXU Runtime Environment, which enables

tracing of a state machines execution.

• Generate exception for not implemented operation – if selected, there will be

exceptions generated for unimplemented methods. If not selected, dummy return

values for unimplemented methods will be generated (new option in the FXU

3.0).

2) Second Tab (Data Types):

• Default single attribute type – possible values: int, double, object, string, decimal,

bool, char, byte, sbyte, short, long, ulong, single, float and User type, which is

specified on the text field.

• Default collection type – possible values: System.Collections.Generic.List,

System.Collections.Generic.LinkedList, System.Collections.Generic.SortedList,

System.Collections.Generic.Queue, System.Collections.Generic.Stack and User

type,

which is specified on the text field.

• Default return type – possible values: void, int, double, object, string, decimal,

bool,

char, byte, sbyte, short, long, ulong, single, float and User type, which is specified

on

the text field.

• Default ordered collection type – possible values: System.Collections.Generic.List,

System.Collections.Generic.LinkedList, System.Collections.Generic.SortedList,

System.Collections.Generic.Queue, System.Collections.Generic.Stack and User

type,

12

which is specified on the text field.

• Default unique collection type – possible values: System.Collections.Generic.List,

System.Collections.Generic.LinkedList, System.Collections.Generic.SortedList,

System.Collections.Generic.Queue, System.Collections.Generic.Stack and User

type, which is specified on the text field.

3) Third Tab (Log4net configuration):

• The “Add Logging in Console” check box – specify if logs should be visible in a

console after launching the generated application.

• The “Set Filter” button in “Console Logger” section – set a filter configuration of

the

console logger.

• The “Add logging in file” check box – specify if logs should be placed in a file.

• The “Directory” text field – specify the directory where the log file is created.

• The “File name” text field – specify the log file name.

• The “Set Filter” in “File Logger” section – set a filter configuration of the file

logger.

• The “Header of logging file” text field – specify the header of the log file.

• The “Footer of logging file” text field – specify the footer of the log file.

• The “Log date” check box – specify if date should be logged in the log file.

• The “Log message level” check box – specify if log level should be logged in the

log file.

• The “Logger name” check box – specify if the logger name should be logged in the

log file.

• The “Log message value” check box – specify if logging messages should be

logged in the log file.

• The “Log thread id” check box – specify if a thread identifier should be logged in

the log file.

4) Fourth Tab (Algorithm configuration):

• Add default initial state in orthogonal regions if possible and necessary – if

selected, the generator will correct the error situation when an orthogonal region

has no initial state.

• Use priority event queue – if selected, a priority event queue will be used instead

of a FIFO queue in the FXU Runtime Environment. There is also a possibility to

configure priorities for different event types

FXU 3.0).

• Filtrate events during dispatching

those state machines in which they are

• Prepare time events during generation

calculated during

execution (new option

• Run “after” event in one single threa

for all “after” events that might occur in a state instead of separate thread for every

“after” event (new option

• Broadcast call events only to

event for a non-static operation in

machine of the object that has invoked the operation

In order to start a C# code generation process, click

process is completed an appropriate message dialog window will appear

Figure 10. The

3.5. Creating the Microsoft Visual Studio 2008 project

The last step is a Microsoft Visual Studio 2008

can be omitted. Figure 11 shows first three windows of the

a possibility to specify a project name,

containing class namespace and name.

machines can be initialized and started.

13

configure priorities for different event types (4 is the highest) (new option

Filtrate events during dispatching – if selected, events will be dispatched only to

achines in which they are really used (new option

Prepare time events during generation – if selected, time events for a state will be

calculated during the code generation phase, but not during

(new option in the FXU 3.0).

event in one single thread – if selected, there will be one single thread

events that might occur in a state instead of separate thread for every

(new option in the FXU 3.0).

Broadcast call events only to invoking object’s state machine

static operation in a class will be dispatched only to

object that has invoked the operation (new option

C# code generation process, click the “Generate” button.

appropriate message dialog window will appear (Figure

The message window after successful code generation.

the Microsoft Visual Studio 2008 project

Microsoft Visual Studio 2008 project generation. It is an optional step and

ows first three windows of the FXU Application Wizard

project name, to generate the Main function and specify its

containing class namespace and name. In the third window of the wizard

machines can be initialized and started.

(new option in the

events will be dispatched only to

 in the FXU 3.0).

time events for a state will be

, but not during an application

there will be one single thread

events that might occur in a state instead of separate thread for every

 – if selected, a call

class will be dispatched only to the state

(new option in the FXU 3.0).

” button. If generation

Figure 10).

It is an optional step and

FXU Application Wizard. There is

function and specify its

In the third window of the wizard, selected state

Figure

In the last window of the wizard

invoked in the Main function

operations. The window is shown

Figure 12. Application Wizard

14

Figure 11. First three windows of Application Wizard.

dow of the wizard there is a possibility to specify which operations

nction. There is also a possibility to configure attributes for invoked

The window is shown in the figure 12.

. Application Wizard - configuration of operations in the Main function.

specify which operations have to be

. There is also a possibility to configure attributes for invoked

function.

In order to generate the Microsoft

the generation process is successful,

Figure 13. Message window

The project is created and ready to open and run in the

Application Wizard creates:

• Microsoft Visual Studio

o MarteFunctionalTests

o MarteFunctionalTests

• Optionally, C# files with the

15

Microsoft Visual Studio 2008 project click the “Generate

is successful, an appropriate message window will appear

. Message window - after successful Microsoft Visual Studio 2008 project generation.

The project is created and ready to open and run in the Microsoft Visual Studio 2008

Microsoft Visual Studio files:

MarteFunctionalTests.csproj - project file

MarteFunctionalTests.sln - solution file

Optionally, C# files with the Main function and namespace directories

Generate” button. If

appropriate message window will appear (Figure 13).

project generation.

sual Studio 2008. The

function and namespace directories

