

WEiTI

FXU 5.0

Framework for eXecutable UML 5.0

Karol Redosz under the supervision of Anna Derezińska

2014-02-27

This document describes a process of creating an executable application using the FXU

framework and shows changes introduced in the new version of the tool.

FXU is a framework used for creating applications according to MDE (Model-Driven

Engineering) methodology. It performs transformation from UML class and state diagrams

into a C# implementation. This document is an updated version of the FXU User Guide

created by Marian Szczykulski. In this section, there is presented a simple example, which

shows how to use the FXU Generator in order to generate a C# code from a UML model. For

more information about FXU please visit the project homepage:

http://galera.ii.pw.edu.pl/~adr/FXU/.

1. Creating a UML model

In the first step, a UML model has to be created. In the example, IBM Rational Software

Architect 9.0 has been used, but it is possible to use any CASE tool which supports exporting

the UML model into the UML format of Eclipse (.uml).

The created model has to be exported to the UML format of Eclipse. It can be done by

clicking “FileExport”, selecting “UML 2.2 Model” on the “Other” section and following

wizard’s steps. It is important to select an “Export applied profiles” option in the second

frame. Thanks to this, the FXU Generator will be able to read all applied profiles in the model

and generate appropriate C# code.

Fig. 1. RSA 9.0 Export Wizard.

2. Launching the FXU Generator and loading the UML model

The generator can be launched by double clicking the “FXU Generator 5.0.jar” file (the

application requires JRE1.7). In order to load the model click “FileOpen” and select a file

with the exported model in your file system.

Fig. 2. A UML model loaded to the FXU Generator.

Now, the model is loaded and visualized in a tree-like form which represents the real

hierarchy in the original UML model (Figure 2). It is important to check logs in the result

frame at the bottom of the main window. There are a few warnings. They indicate that the

FXU loader has not been able to find files with UML profiles that are applied in the model. In

this case, stereotypes from these profiles were not used, so warnings can be ignored.

3. Validating the UML model (optional)

In order to perform model validation click “ModelValidate Model”. The dialog window

with a message “Model is valid” should appear. In the result frame, at the bottom of the main

window, additional messages should appear.

4. Generating C# code

In order to generate C# code from the loaded model click “ModelGenerate C# Code”.

In the generation window, there is a possibility to configure some features of the generated

code such as algorithms for the FXU Runtime Environment, a destination path, default data

types or an application logger configuration. The generation window contains five tabs but

only the first one (General Tab) was extended in the FXU 5.0.

General Tab (extended in the FXU 5.0):

 Output directory – indicates a place where generated C# code will be stored,

 Keep all existing files – if selected, all existing files of the same name in the output

directory will be kept,

 Overwrite all existing files – if selected, all existing files of the same name in the

output directory will be replaced by new ones,

 Merge all existing files with model – if selected, all existing files in the output

directory will be merged with associated classes of the model (new option in the

FXU 5.0),

 Generate FXU Tracer’s version of FXU Runtime Environment – if selected, there will

be application generated with the FXU Runtime Environment, which enables tracing

of a state machines execution,

 Generate exception for not implemented operation – if selected, there will be

exceptions generated for unimplemented methods. If not selected, dummy return

values for unimplemented methods will be generated.

Fig. 3. FXU Generator – general properties.

Data Types Tab:

 Default single attribute type,

 Default collection type,

 Default return type,

 Default ordered collection type,

 Default unique collection type.

Fig. 4. FXU Generator – default data types.

Log4net Configuration Tab:

 Add Logging in Console,

 Add Logging in file,

 Header of the logging file,

 Footer of the logging file,

 Logging information.

Fig. 5. FXU Generator – log4net properties.

Algorithm Configuration Tab:

 Add default initial state in orthogonal regions if possible and necessary – if selected,

the generator will fix the error situation when orthogonal region has no initial state.

Fig. 6. FXU Generator – algorithm properties.

Semantic Configuration Tab:

 Default entry rule to composit states,

 Events queuing method,

 Execution of after events,

 When after events will be prepared,

 Broadcatsing of call events method,

 Events dispatching method.

Fig. 7. FXU Generator – UML semantic variants.

In order to start a C# code generation process, click the “Generate” button. If generation

process is completed an appropriate message dialog window will appear (Fig. 8).

Fig. 8. The message window appeared after successful code generation.

5. Creating a Visual Studio Project (optional)

The last step is a Microsoft Visual Studio 2008/2010 project generation. It is an optional

step and can be omitted. Figure 9 shows first three windows of the FXU Application Wizard.

There is a possibility to specify a project name, to generate the Main function and specify its

containing class namespace and name. In the third window of the wizard, selected state

machines can be initialized and started.

Fig. 9. First three windows of Application Wizard.

In the last window of the wizard, there is a possibility to specify which operations have to

be invoked in the Main function. There is also a possibility to configure attributes for invoked

operations. The window is shown in the figure 10.

Fig. 10. Application Wizard – configuration of operations in the Main function.

In order to generate the Microsoft Visual Studio project click the “Generate” button. If the

generation process is successful, an appropriate message window will appear (Fig. 11).

Fig. 11. Message window appeared after successful Microsoft Visual Studio project generation.

The project is created and ready to open and run in the Microsoft Visual Studio.

	1. Creating a UML model
	2. Launching the FXU Generator and loading the UML model
	3. Validating the UML model (optional)
	4. Generating C# code
	General Tab (extended in the FXU 5.0):
	Data Types Tab:
	Log4net Configuration Tab:
	Algorithm Configuration Tab:
	Semantic Configuration Tab:

	5. Creating a Visual Studio Project (optional)

