

EITI

FXU
Framework for eXecutable UML

Łukasz Zaremba under the supervision of Anna Derezińska

2011-09-01

This document describes a configuration of the FXU Runtime Library and a process of creating and
execution of UML sematic mutants using the FXU framework.

1

A TABLE OF CONFIGURATION PARAMETERS OF THE

FXU RUNTIME LIBRARY

This section presents a FXU runtime configuration parameters table.

No Interface name

A description of an
interface to

communicate with an

object implementing
…

Implementing class
name

A description of an implementation and its constructor
parameters

1 IAfterEvent A UML time event. AfterEvent A basic implementation of the UML time event.

2
IAfterEvent

Controller

An after event
controller. The

controller handles time

events in a UML state.

AfterEventSingle

ThreadController

The controller handles all time events in a UML state

using one thread.

AfterEventMultip

leThreadsControl

ler

The controller handles time events in a UML state using a

separated thread for each time event.

3
IAfterEvent

Supplier

An after event

supplier. The supplier

provides time events

for a particular UML

state.

StaticAfterEvent

Supplier

The supplier provides time events based on a time event

set, that is created durring initialization of the state

machine.

DynamicAfterEven

tSupplier

The supplier provides time events based on transitions

outgoing the state dynamically durring executioin.

4 ICallEvent A UML call event. CallEvent A basic implementation of the UML call event.

5
IChangeEven

t
A UML change event. ChangeEvent A basic implementation of the UML change event.

6 IChoice
A UML choice

pseudostate.
Choice A basic implementation of the UML choice pseudostate.

7 IClock
A MARTE profile

clock.

LogicalClock A implementation of a MARTE logical clock.

ChronometricCloc

k

A implementation of a MARTE chronometric clock.

Parameters:

unit – a string of characters, that defined a unit for

procesing in the clock. Correct values: milisecond,

second, minute, hour, day, week.

8
ICompletion

Event

A UML completion
event.

CompletionEvent A basic implementation of the UML completion event.

9
IDebugWrite

r

A functionality of

logging trace info of
state machines

execution. Must be

defined one (unnamed

registry element)

for all machines.

DebugWriter

It log trace info of state machines execution. Parameters:

isDebug – a parameter that indicates whether the

logging is enabled.

debugLogFileFullPath – a parameter that defines

full path of the file with logs.

10
IDeepHistor

y

A UML deep history

pseudostate.
DeepHistory

A basic implementation of the UML deep history

pseudostate.

11

IDefaultEnt

ryRule

A functinality of

choosing the first

vertex in a region to
enter after the region

was entered.

ExitRegionIfNoIn

itialPseudostate

An implementation that performs a default entry to the

initial pseudostate in a region, if only one initial
preudostate exists in the region. Otherwise, the region is

considered as completed already after entry.

RequiredExactlyO

neInitialPseudos

tate

An implementation that performs a default entry to the
initial pseudostate in a region, if only one initial

preudostate exists in the region. Otherwise, the state

machine is considered ill-formed and the execution is
stopped.

UseMostAppropria

teState

An implementation that performs a default entry to the

initial pseudostate in a region, if only one initial
preudostate exists in the region. Otherwise, it performs an

entry to the state in the region such that it is not a target of

any transition. If such state doesn’t exist, the region is
considered as completed already after entry.

12 IEntryPoint
A UML entry point

pseudostate.
EntryPoint

A basic implementation of the UML entry point

pseudostate.

13

IEventBroad

caster

An event broadcaster

to provide event

communication for
UML state machines.

EventBroadcaster

Genrates an event in a pool of every state machine.
Parameters:

stateMachineFilter – a reference to an object that

implements a functinality of selecting state machines, to

which a particular event is sent.

EventMulticaster

Generates an event in a pool of state machines given in

parameter. Parameters:

stateMachineFilter – a reference to an object that

implements a functinality of selecting state machines, to

which a particular event is sent.

14
IEventPool

An event pool for

UML state machine.
EventQueue

A FIFO implementation of the event pool for UML state

machine.

2

PriorityEventQue

ue

An implementation of the event pool that supports custom
priorities for different event types. Parameters:

callEventPriority – a parameter that indicates

priority for events of call type,

changeEventPriority – of change type,

signalPriority – of signal type,

afterEventPriority – of time type,

completionEventPriority – of completion type.

15

IExecutionS

cheduler

An execution
scheduler. The

execution scheduler
performs execution in

a UML state machine.

ParallelExecutio

nScheduler

An implementation of the execution scheduler that

perform the execution in orthogonal regions in separated
.NET framework threads.

CustomPriorities

ExecutionSchedul

er

An implementation of the execution scheduler that

perform the execution in orthogonal regions in separated

.NET framework threads, but this implementation takes
into account prioriorites set for regions. The execution in

regions, the entry to regions and the exit form regions are

performed according these priorities.

16 IExitPoint
A UML exit point

pseudostate.
ExitPoint

A basic implementation of the UML exit point

pseudostate

17 IFinalState A UML final state. FinalState A basic implementation of the UML fork pseudostate.

18 IFork
A UML fork
pseudostate.

Fork A basic implementation of the UML fork pseudostate.

19
IInitialPse

udostate

A UML initial

pseudostate.

InitialPseudosta

te
A basic implementation of the UML initial pseudostate.

20
IInternalTr

ansition

A UML internal
transition.

InternalTransiti

on
A basic implementation of the UML internal transition.

21 IJoin
A UML join

pseudostate.
Join A basic implementation of the UML join pseudostate.

22
IJoinLikeEx

itPoint

A UML exit point
pseudostate that

behaves like a join

pseudostate.

JoinLikeExitPoin

t

A basic implementation of the UML exit point

pseudostate that behaves like a join pseudostate.

23 IJunction
A UML junction

pseudostate.
Junction A basic implementation of the UML junction pseudostate.

24
IJunctionLi

keExitPoint

A UML exit point

pseudostate that
behaves like a junction

pseudostate.

JunctionLikeExit

Point

A basic implementation of the UML exit point
pseudostate that behaves like a junction pseudostate.

25
ILocalTrans

ition

A UML local
transition.

LocalTransition A basic implementation of the UML local transition

26
IRegion A UML region.

Region
An implementation of the UML region. Execution in the

region has default priority.

Region

An implementation of the UML region, that allow to
define execution of action priorities. Parameters:

defaultEntryRule – a reference to an object that

implements a functinality of choosing the first vertex in a

region to enter after the region was entered.

entryPriority – a parameter that defines the priority

of entry to the region.

executionPriority – a parameter that defines the

priority of execution in the region.

exitPriority – a parameter that defines the priority

of exiting from the region.

27
IShallowHis

tory

A UML shallow
history pseudostate.

ShallowHistory
A basic implementation of the UML shallow history
pseudostate.

28
ISignalEven

t
A UML signal event. SignalEvent A basic implementation of the UML signal event.

29 IState A UML state. State A basic implementation of the UML state.

30

IStateMachi

ne
A UML state machine.

StateMachine

A basic implementation of the UML state machine.

Parameters:

eventsPool – a reference to an object that implements

an event pool.

afterEventsController – a reference to an object

that implements an after event controller, which handles
time events in the state machine.

afterEventsSupplier – a reference to an object

that implements an after event supplier, which provides

time events for a the state machine.

executionScheduler – a reference to an object that

implements an execution scheduler, which performs
execution in the state machine.

TimedProcessingS

tateMachine

A MARTE profile implementation of the state machine.

Parameters:

duration – a parameter that defines a value of duration

for the state machine.

clk – a reference to an object that implements an clock

3

for the state machine.

evStart – a reference to the start event for the state

machine.

evFinished – a reference to the finished event for the

state machine

eventsPool – a reference to an object that implements

an event pool.

afterEventsController – a reference to an object

that implements an after event controller, which handles

time events in the state machine.

afterEventsSupplier – a reference to an object

that implements an after event supplier, which provides

time events for a the state machine.

executionScheduler – a reference to an object that

implements an execution scheduler, which performs
execution in the state machine.

generateStartEv – a boolean value that indicates

does the state machine generate an event on it is started.

generateFinishEv – a boolean value that indicates

does the state machine generate an event on it is finished.

runOnStartEv – a boolean value that indicates does

the state machine execute its internal action when a

particular event occurs.

exitOnFinishEv – a boolean value that indicates does

the state machine stop the execution of its internal action

when a particular event occurs.

31

IStateMachi

nesFilter

A filter selects state

machines, to which a

particular event is sent.
The filter is used by an

event broadcaster.

AllStateMachines

Filter

An implementation, that does not filter state machines

durring an event dispatching. It always provide a set of all
state machines in an executed model.

FilteredStateMac

hinesFilter

An implementation, that filters state machines durring an

event dispatching. It provide a set of state machines such
that the event is subscribed by each one.

32 ITerminate
A UML terminate

pseudostate.
Terminate

A basic implementation of the UML terminate

pseudostate.

33 ITransition A UML transition. Transition A basic implementation of the UML transition.

4

INSTRUCTION TO FXU MUTATION TEST ADD-IN

This section describes how to install the FXU Mutation Test Add-in into Visual Studio

2010 and how to use it.

OVERVIEW:

The FXU Mutation Test Add-in performs mutation testing inside Visual Studio 2010 IDE.

SYSTEM REQUIREMENTS:

Supported Operating Systems:

 Windows 7,

 Windows Server 2003 R2,

 Windows Server 2003 SP2,

 Windows Server 2008 R2,

 Windows Server 2008 SP2,

 Windows Vista with SP2,

 Windows XP with SP3.

Prerequisites:

 Visual Studio 2010 Premium or better (for information please check

http://www.microsoft.com/visualstudio/2010/sysreqs).

 Visual Studio 2010 SDK (for information please check

http://www.microsoft.com/download/en/details.aspx?id=2680).

INSTALATION INSTRUCTIONS:

1. Download the FXUTestToolsInstall.zip file from FXU website

(http://galera.ii.pw.edu.pl/~adr/FXU/download/FXUTestToolsInstall.zip).

2. Extract contents of the file to any location.

3. Make sure that Visual Studio 2010 is not running.

4. Run Visual Studio Command Prompt (2010) with administrator privileges.

5. In the command prompt change a current location to the location where you extracted

content of FXUTestToolsInstall.zip. Then change a current location, to the Deploy

folder.

http://www.microsoft.com/visualstudio/2010/sysreqs
http://www.microsoft.com/download/en/details.aspx?id=2680
http://galera.ii.pw.edu.pl/~adr/FXU/download/FXUTestToolsInstall.zip

5

6. To begin installation run script deploy.bat.

7. The installation may take about a few minutes. After all you see a picture as above.

It means that the FXU Mutation Test Add-in was installed successfully.

USAGE INSTRUCTION:

1. Open Visual Studio 2010.

2. On the Test menu, click New Test…. The Add New Test dialog box appears.

6

3. In the list of Templates, select Mutation Test.

4. In the Test Name box, type a name ended with the .mutationtest extension.

5. For Add to Test Project, select an existing test project or select Create a new Visual C#

test project… and then click OK.

6. If Create a new Visual C# test project…option was selected, the New Test Project

dialog box appears. In the Enter a name for your new project box, type a name of

the test project and then click Create. This creates a project, which is displayed in

Solution Explorer.

7. A file named as given in the Test Name box, which contains the definition of your

mutation test, is added to the test project.

7

8. The added mutation test is opened in Mutation Test Editor. There is a list of mutants to

run in the panel on the left side of the editor. It’s empty initially. On the right there is a list

containing all tests existing in the currently opened solution (building the solution is

required to see new tests in the list).

9. The added mutation test is also visible in Test View. If the Test View is not already open,

on the Test menu, click Windows and then select Test View. Otherwise, refreshing the

view may be required to see the test.

10. In Mutation Test Editor check tests, which will be executed for each mutant, and then

save your mutation test (Ctrl+S). Tests that are checked should be prepared in accordance

with the instruction how to define a unit test for a classes that use FXU.

8

11. To add mutants to the mutation test, you need to open the test in a XML editor. Open

Solution explorer, then right click the file containing the mutation test and select Open

with….

12. The Open with … dialog box appears. Select Automatic Editor Selector (XML) and

click OK.

13. If the test was open in Mutation Test Editor, a warning dialog box appears. Click Yes.

9

14. The mutation test is opened in Automatic Editor Selector (XML). Locate a Mutants

element in the test. All mutants should be entered as a sequence of child elements named

Mutant of the Mutants element. For each mutant, following attributes have to be

defined:

Attribute name Type Description

name xs:string
A name of the mutant. The name will be displayed in the

test editor window and in the the test results window.

id tt:IDSimpleType A GUID to identify mutants.

shouldBeKilled xs:boolean

A value that indicates that the mutant should be killed.

In future versions the value will be used to calculate

the mutation test score.

isEquivelent xs:boolean

A value that indicates that the mutant is equivalent to

the original one. In future versions the value will be used

to calculate the mutation test score.

isKilled xs:boolean

A value that indicates that the mutant was killed durring

the mutation test execution. In future versions the value

will be used to calculate the mutation test score.

type xs:string
A definiton of the class that implements a certain mutant

type.

xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:tt="http://microsoft.com/schemas/VisualStudio/TeamTest/2010"

Other attributes are specific to a mutant type. At the moment, only one mutant type

(FXU Mutant) is supported (see instruction for creation and configuration of FXU

Mutant mutants).

10

15. After adding mutants, save changes (Ctrl+S), build your solution and click refresh

on the toolbar in the Test View window to update the list of tests. Double click on the

mutation test in Test View. Added mutants are now visible in Mutation Test Editor.

16. To run the mutation test right click the test in the Test View list and then click Run

selection. If the Test Results window is not already open, it opens now. The test runs.

17. In the Test Results window, right-click the row that represents your mutation test

and then click View Test Results Details. In the Test Results Details page, there are

summary information about the whole test execution. Detailed test results are presented

bellow for each mutant, for each test.

11

INSTRUCTION HOW TO DEFINE A FXU MUTANT

This section describes how to configure a mutant of type FXU Mutant.

OVERVIEW:

Mutants of type FXU Mutant are UML state machine semantic mutants. To successful use

a mutant of this kind while mutation testing, its definition and configuration are required.

The definition contains basic information about the mutant and a reference to the

configuration. On the other hand, the configuration consists of entries that indicate semantic

variant used for all state machines, for a particular state machine or even for a particular

region in a state machine.

Prerequisites:

 Visual Studio 2010 Premium or better (for information please check

http://www.microsoft.com/visualstudio/2010/sysreqs).

 FXU Mutation Test Add-in into Visual Studio 2010.

MUTANT DEFINING INSTRUCTION:

1. Open Visual Studio 2010.

2. Open a mutation test in Automatic Editor Selector (XML):

a. Open Solution explorer, then right click the file containing the mutation test

and select Open with….

b. The Open with … dialog box appears. Select Automatic Editor Selector (XML)

and click OK.

c. If the test was open in Mutation Test Editor, a warning dialog box appears.

Click Yes.

3. The mutation test is opened in Automatic Editor Selector (XML). Locate a Mutants

element in the test. All mutants should be entered as a sequence of child elements named

Mutant of the Mutants element. For each mutant of type FXU mutant, following

attributes have to be defined:

Attribute name Type Description

name xs:string
A name of the mutant. The name will be displayed in

the test editor window and in the test results window.

id
tt:IDSimpleTyp

e
A GUID to identify mutants.

shouldBeKilled xs:boolean

A value that indicates that the mutant should be killed.

In future versions the value will be used to calculate

the mutation test score.

isEquivelent xs:boolean
A value that indicates that the mutant is equivalent to

the original one. In future versions the value will be

http://www.microsoft.com/visualstudio/2010/sysreqs

12

used to calculate the mutation test score.

isKilled xs:boolean

A value that indicates that the mutant was killed durring

the mutation test execution. In future versions the value

will be used to calculate the mutation test score.

type xs:string

A definiton of the class that implements a certain

mutant type. For mutatns of type FXU Mutant, the

attribute have to have a following value:
FXU.TestTools.MutationTesting.FXUMuta

nt, FXU.TestTools, Version=1.0.0.0,

Culture=neutral, PublicKeyToken=null

unitySectionName xs:string

The name of section in the test project configuration file

that contains the semantic configuration for the mutant

(unity by default). The name will be needed to

configure the mutant.

unityContainerNam

e
xs:string

The name of conainer in a configuration section in

the test project configuration file that contains the

sematic configuration for the mutant (unnamed

container contains the configuration for non-mutated

program). The name will be needed to configure the

mutant.

xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:tt="http://microsoft.com/schemas/VisualStudio/TeamTest/2010"

Define as many FXU Mutant mutants as you need following the above instruction.

An example:

 <Mutants>

 <Mutant id="4e002d66-2aa9-42e0-8537-37b2c88d3fae" name="mutant1"

shouldBeKilled="false" type="FXU.TestTools.MutationTesting.FXUMutant, FXU.TestTools,

Version=1.0.0.0, Culture=neutral, PublicKeyToken=null" isEquivalent="true"

isKilled="false" unityContainerName="mutant1" unitySectionName="unity" />

 <Mutant id="a6d25057-8bd3-4409-9ba6-991e5fd4dc4d" name="mutant2"

shouldBeKilled="true" type="FXU.TestTools.MutationTesting.FXUMutant, FXU.TestTools,

Version=1.0.0.0, Culture=neutral, PublicKeyToken=null" isEquivalent="false"

isKilled="false" unityContainerName="mutant2" unitySectionName="unity" />

 <Mutant id="9fcefadb-0a6b-4130-8c62-e4200fa1e549" name="mutant3"

shouldBeKilled="false" type="FXU.TestTools.MutationTesting.FXUMutant, FXU.TestTools,

Version=1.0.0.0, Culture=neutral, PublicKeyToken=null" isEquivalent="true"

isKilled="false" unityContainerName="mutant3" unitySectionName="unity" />

 <Mutant id="20f1a58a-496a-4394-aad1-38484f0e0a2f" name="mutant4"

shouldBeKilled="false" type="FXU.TestTools.MutationTesting.FXUMutant, FXU.TestTools,

Version=1.0.0.0, Culture=neutral, PublicKeyToken=null" isEquivalent="false"

isKilled="false" unityContainerName="mutant4" unitySectionName="unity" />

 <Mutant id="2e2bbc63-264a-4e78-9298-48099f7e7df1" name="mutant5"

shouldBeKilled="false" type="FXU.TestTools.MutationTesting.FXUMutant, FXU.TestTools,

Version=1.0.0.0, Culture=neutral, PublicKeyToken=null" isEquivalent="true"

isKilled="false" unityContainerName="mutant5" unitySectionName="unity" />

 <Mutant id="48bba617-5b36-4a2b-8495-d1396e0623af" name="mutant6"

shouldBeKilled="false" type="FXU.TestTools.MutationTesting.FXUMutant, FXU.TestTools,

Version=1.0.0.0, Culture=neutral, PublicKeyToken=null" isEquivalent="false"

isKilled="true" unityContainerName="mutant6" unitySectionName="unity" />

 </Mutants>

4. After adding mutants, save changes (Ctrl+S), build your solution and click refresh

on the toolbar in the Test View window to update the list of tests. Double click on the

mutation test in Test View. Added mutants are now visible in Mutation Test Editor.

13

CONFIGURATION OF MUTANT INSTRUCTION:

1. Open Visual Studio 2010.

2. Open the configuration file (App.config) included in the test project, in which tests are

defined.

3. If the configuration file is not included in the test project, right click on the test project,

select Add… and then click Existing item.

4. The Add Existing Item dialog box appears. Locate the App.config file generated with

the project based on a UML model. Select it and click Add As Link. Then open the file.

14

5. In the file, locate the configSections element. Find its child element named

section that has the type attribute with a value equals

Microsoft.Practices.Unity.Configuration.UnityConfigurationSe

ction, Microsoft.Practices.Unity.Configuration. A value of its name

attribute is the name of the element that contains the semantic configuration of mutants.

The value has to equal the value of the unitySectionName attribute in mutant

definitions. In the bellow example, the value is unity.

 <configSections>

 <section name="unity"

type="Microsoft.Practices.Unity.Configuration.UnityConfigurationSection,

Microsoft.Practices.Unity.Configuration"/>

 </configSections>

6. In the file, locate an element with the same name as the value of the name attribute of

the element named section found in the previous point (unity in the above example).

Find its child elements named container. The one that has not the name attribute,

contains a configuration of the non-mutated program. Others contain configuration of

single mutants.

7. To add a new mutant configuration, copy the container element containing the

configuration of the non-mutated program. Paste the element as the last child element

of the element containing all configurations (unity in the example).

15

8. Then add the name attribute to the copied container element. A value of the attribute

have to equal the value of the unityContainerName attribute in the mutant

definition.

9. Then the copied container element can be configured. There are several possibilities.

You can change the semantic used for all state machines, for a particular state machine or

for a particular region in a state machine.

a. To change the general semantic used for all state machines, in the FXU

runtime configuration parameters table find an interface that is responsible for

the semantic issue you’d like to change. Let’s suppose IEventPool is the

interface. Then in the container element locate its child element named

register that has the type attribute equal to IEventPool.

<register type="IEventPool" mapTo="EventQueue">

<constructor />

</register>

Then you can change the class, to which the interface will be mapped, and its

parameters according to the FXU runtime configuration parameters table. For

example on PriorityEventQueue.

<register type="IEventPool" mapTo="PriorityEventQueue">

<constructor>

<param name="callEventPriority" value="1"/>

<param name="changeEventPriority" value="2"/>

<param name="signalPriority" value="3"/>

<param name="afterEventPriority" value="4"/>

<param name="completionEventPriority" value="5"/>

</constructor>

</register>

If the register element contains a child element named lifetime.

The lifetime element have to remain unchanged.

b. To change a semantic used for a particular state machine, in the FXU runtime

configuration parameters table find an interface that is responsible for the

semantic issue you’d like to change. Let’s suppose IEventPool is the interface.

Then in the container element locate its child element named register that

has an type attribute equal to IEventPool.

<register type="IEventPool" mapTo="EventQueue">

<constructor />

</register>

16

Copy the register element and paste it as a child element of the container

element containing the configuration of the mutant. Then add a name attribute to

the copied element. A value of the attribute have to equal the qualified name of the

class, that is the owning class of the state machine, whose semantic you’d like to

change. Finally you can change the class, to which the interface will be mapped,

and its parameters according to the FXU runtime configuration parameters

table. For example on PriorityEventQueue.

<register type="IEventPool"

name="PresenceAgent.presenceAgentController.Subscriber"

mapTo="PriorityEventQueue">

<constructor>

<param name="callEventPriority" value="1"/>

<param name="changeEventPriority" value="9"/>

<param name="signalPriority" value="3"/>

<param name="afterEventPriority" value="4"/>

<param name="completionEventPriority" value="7"/>

</constructor>

</register>

NOTE: If the register element contains child element named lifetime,

the register element should not be defined for a particular state machine.

c. To change a semantic used for a particular region in a particular state

machine in the container element locate its child element named register

that has the type attribute equal to IRegion.

<register type="IRegion" mapTo="Region">

<constructor>

<param name="defaultEntryRule" dependencyType="IDefaultEntryRule"/>

</constructor>

</register>

Copy the register element and paste it as a child element of the container

element containing the configuration of the mutant. Add a name attribute to the

copied element. A value of the attribute have to equal the qualified name

of the class, that is the owning class of the state machine, whose semantic you’d

like to change, concatenated with “.” and then concatenated with the qualified

name of the region whose semantic you’d like to change. Then set priorities of

actions (entry, execution, exit), which will be performed during an execution.

Priorities are described in the FXU runtime configuration parameters table. An

example:

<register type="IEventPool"
name="PresenceAgent.presenceAgentController.Subscriber.PresenceAgent::presenceAg
entController::Subscriber::SubscriberStateMachine::SubscriberMainRegion::Adapter
Communication::Region1" mapTo="PriorityEventQueue">

<constructor>

<param name="defaultEntryRule" dependencyType="IDefaultEntryRule"/>

<param name="entryPriority" value="9"/>

17

<param name="executionPriority" value="3"/>

<param name="exitPriority" value="4"/>

</constructor>

</register>

NOTE: If a state machine have to execute actions according to the custom

priorities semantic (see the FXU runtime configuration parameters table,

row no. 15), then the state machine takes into account priorities of actions

in regions.

10. Save the configuration file. Your mutant has already been configured.

18

INSTRUCTION HOW TO DEFINE UNIT TESTS FOR

CLASSES THAT USE FXU

This section describes how to define a unit test for a classes that use FXU.

INSTRUCTIONS:

1. Open Visual Studio 2010.

2. Open a solution generated from a UML model using FXU Generator.

3. On the Test menu, click New Test…. The Add New Test dialog box appears. In the list

of Templates, select Unit Test Wizard. For Add to Test Project, select an existing test

project or select Create a new Visual C# test project…and then click OK.

If Create a new Visual C# test project…option was selected, the New Test Project

dialog box appears. In the Enter a name for your new project box, type a name of

the test project and then click Create. This creates a project, which is displayed in

Solution Explorer.

4. The Create Unit Tests dialog box is displayed. Under Current selection, a tree structure

shows the class and member hierarchy of the assembly of the project generated from

a UML model. You can use this page to generate unit tests for any selection of those

members. In the tree structure, select methods you’d like to test. Then in the Create Unit

Tests dialog box, click OK.

19

5. Files containing test classes are added to the selected test project. In general, a test class

contains not only the individual test methods, but various methods for initializing and

cleaning up tests as well. In fact, the Create Unit Tests wizard added some of these

additional methods to the test class when it is created. In each test class locate

Additional test attributes region and expand it.

6. Uncomment the method with the [ClassInitialize()] attribute and type

the following line as the method body:

FXU.Infrastructure.Unity.FXUUnityContainer.Run();. An example:

#region Additional test attributes

//

//You can use the following additional attributes as you write your tests:

//

//Use ClassInitialize to run code before running the first test in the class

[ClassInitialize()]

public static void MyClassInitialize(TestContext testContext)

{

FXU.Infrastructure.Unity.FXUUnityContainer.Run();

}

//

//Use ClassCleanup to run code after all tests in a class have run

//[ClassCleanup()]

//public static void MyClassCleanup()

//{

//}

//

//Use TestInitialize to run code before running each test

//[TestInitialize()]

//public void MyTestInitialize()

//{

//}

//

//Use TestCleanup to run code after each test has run

//[TestCleanup()]

//public void MyTestCleanup()

//{

//}

//

#endregion

20

7. If at the second point you created a new test project, there is a need to link a configuration

file to the test project. Right click on the test project, select Add… and then click Existing

item.

The Add Existing Item dialog box appears. Locate the App.config file generated with

the project based on a UML model, select it and click Add As Link. Then open the file.

8. Rebuild the solution. Your tests have already been adapted to execution with the FXU

runtime.

