
DISCIPLINE OF SCIENCE INFORMATION AND COMMUNICATION TECHNOLOGY

FIELD OF SCIENCE ENGINEERING AND TECHNOLOGY

Ph.D. Thesis
Kamil Deja, M.Sc.

Supervisor
Tomasz Trzciński, PhD DSc

WARSAW 2023

Acknowledgements

First of all I would like to express my sincere gratitude to my supervisor Tomasz
Trzciński. Thank you for taking me onboard for this fascinating journey we have
shared over the past few years. Your guidance and support have been invaluable
throughout my scientific career, and I am grateful for the opportunity to explore the
exciting side of research under your supervision.

I would also like to extend my thanks to the brilliant individuals I had the plea-
sure of working with. Many thanks to Paweł Wawrzyński for our stimulating discus-
sions, valuable comments and out-of-the box ideas. Sincere appreciation to Jakub
M. Tomczak, who warmly hosted me in Amsterdam while showing me how much I
still have to learn about generative modelling.

My heartfelt thanks go to my coauthors, for their hard work in our joint projects
– among the others: Wojciech Masarczyk, Daniel Marczak, Jan Dubiński, Anna
Kuzina, Georgi Tinchev and Ariadna Sanchez. Sincere appreciation to my other col-
leagues from Warsaw, Amsterdam and Amazon, especially: Monika Wysoczańska,
Łukasz Neumann, Kacper Kania, Marta Czarnowska. Thank you all for great sup-
port in this journey. Lastly, I extend a special thanks to Mateusz Klimaszewski, who
has proven to be the finest interactive rubber duck I could have ever envisioned.

I am immensely grateful to my wife and family for their unwavering support,
which has been instrumental in enabling me to pursue my scientific career. Thank
you for giving me a foundation to pursue my scientific career, and thank you for
instilling within me a deep-seated passion for continuous learning.

3

Data representations in generative modelling
This thesis presents a series of publications contributing to an in-depth understand-
ing and development of generative models. We specifically focus on two recent ap-
proaches: generative autoencoders and diffusion-based generative models. We anal-
yse how these methods build internal data representations and how they change
when a model is retrained with additional data. We also propose several novel meth-
ods for generative modelling and their extensions to a continual learning setup.

In the first part of our work, we provide an overview of different generative au-
toencoders. We then introduce a novel model which allows for flexible encoding of
examples into data representations, leveraging an additional neural network for
sampling new data points.

In the second part, we move on to the recently proposed diffusion-based genera-
tive models. We begin by presenting an in-depth analysis of how the intermediate
representations of images change with diffusion timesteps. Next, we introduce a
novel joint model that demonstrates how the data representations generated by a
diffusion model can be utilised to enhance performance in downstream tasks.

Finally, we extend our analysis to a continual learning scenario. Here, we show
that generative approaches can be used as a universal method for continuous knowl-
edge accumulation within models. To that end, we introduce two methods for con-
tinual generative modelling. In the first one, we propose a binary autoencoder that
efficiently stores past experiences, while the second one is a method for the con-
tinuous alignment of data representations in the Variational Autoencoder’s latent
space.

Overall, our work contributes to the development of generative models through
an in-depth analysis of their internal representations and novel ways of their appli-
cation to real-life problems and continual-learning scenario.

Keywords: Generative Models, Continual Learning, Variational Autoencoder, Dif-
fusion Models

5

Reprezentacje danych w modelowaniu generatywnym
W niniejszej pracy przedstawiamy serię publikacji poświęconą analizom i oryginal-
nym metodom modelowania generatywnego. W szczególności skupiamy się na spo-
sobie budowania reprezentacji danych za pomocą powyższych metod. Badamy też
jak wewnętrzne reprezentacje zmieniają się przy dotrenowywaniu modelu w opar-
ciu o dodatkowe dane. W ramach przedstawionych prac proponujemy kilka nowych
modeli generatywnych, wraz z ich rozszerzeniem do problemu uczenia ciągłego.

W pierwszej części pracy, dokonujemy przeglądu różnych autoenkoderów genera-
tywnych. Następnie przedstawiamy nasz nowy model, który umożliwia elastyczne
kodowanie przykładów do wewnętrznych reprezentacji, wykorzystując dodatkową
sieć neuronową do próbkowania nowych obserwacji.

W drugiej części, przechodzimy do zaproponowanych niedawno modeli genera-
tywnych działających na zasadzie procesu dyfuzji. W pierwszej kolejności przed-
stawiamy analizy tego jak tymczasowe reprezentacje danych zmieniają się wraz z
krokami dyfuzji. Następnie wprowadzamy nowy model łączny, za pomocą którego
pokazujemy jak reprezentacje danych tworzone w procesie dyfuzji mogą być wyko-
rzystane do poprawy wydajności w różnych zadaniach.

Następnie, rozszerzamy naszą analizę na problem uczenia ciągłego. W zagadnie-
niu tym pokazujemy że modele generatywne mogą być używane jako uniwersalna
metoda do gromadzenia wiedzy napływającej w porcjach. W szczególności, przedsta-
wiamy nasze dwie autorskie metody. W pierwszej wprowadzamy binarny autoenko-
der, który wykorzystujemy do efektywnego przechowywania przeszłych doświadczeń.
Natomiast w drugiej pracy, pokazujemy jak wykorzystać wariacyjny autoenkoder do
ciągłej konsolidacji wiedzy poprzez uspójnianie ukrytych reprezentacji danych.

Podsumowując, w niniejszej pracy prezentujemy dogłębną analizę wewnętrznych
reprezentacji modeli generatywnych oraz ich nowatorskie zastosowania w realnych
problemach, włączając w to uczenia ciągłego.

Sowa kluczowe: Modele Generatywne, Uczenia Ciągłe, Autoenkodery Wariacyjne,
Modele Dyfuzyjne

6

Contents

Acknowledgements . 3

1. Introduction 13
1.1. Research Questions . 14
1.2. Thesis Contribution . 15

1.2.1. Generative autoencoder with limited latent space regularisation 16
1.2.2. Analysis of the generative process in DDGMs 17
1.2.3. Data representation in DDGMs . 18
1.2.4. Binary data representations for image compression with

autoencoder . 19
1.2.5. Continuous knowledge consolidation in variational autoen-

coder’s latent space . 20
1.3. Publications Not Included in the Dissertation 23

2. Background 25
2.1. Generative Autoencoders . 25

2.1.1. Variational Autoencoder . 25
2.2. Generative Adversarial Networks . 26
2.3. Diffusion-Based Deep Generative Models (DDGMs) 28

3. Related Works 31
3.1. Generative Autoencoders . 31

3.1.1. Latent space regularisation in generative autoencoders 31
3.1.2. Generative autoencoders with adversarial training 32
3.1.3. Hierarchical Variational Autoencoders 33
3.1.4. Latent space geometry . 34
3.1.5. Application of data representations learned with generative

models . 35
3.2. Diffusion Based Deep Generative Models 38

3.2.1. Connection to hierarchical Variational Autoencoders 39
3.2.2. DDGMs and data representation . 39

7

3.3. Generative Models for High Energy Physics 40
3.4. Evaluation of Generative Models . 42

4. End-to-End Sinkhorn Autoencoder With Noise Generator 44
Preface . 45
Abstract . 46
4.1. Introduction . 47
4.2. Related Works . 49
4.3. Sinkhorn Autoencoder with Noise Generator 49

4.3.1. Reconstruction loss . 50
4.3.2. Sinkhorn loss . 51
4.3.3. End-to-end Sinkhorn Autoencoder objective 52
4.3.4. Conditional Sinkhorn objective . 52

4.4. Experiments . 53
4.5. Conclusions . 58

5. On Analyzing Generative and Denoising Capabilities of
Diffusion-based Deep Generative Models 60
Preface . 61
Abstract . 62
5.1. Introduction . 62
5.2. Background . 63
5.3. Denoising Auto-Encoders . 64
5.4. Related Works . 64
5.5. An Analysis of DDGMs . 65
5.6. DAED: Denoising Auto-Encoder with Diffusion 67
5.7. Experiments . 68

5.7.1. Is there a transition in functionality of the backward diffusion
process that switches from generating to denoising? 69

5.7.2. How does splitting DDGMs into generative and denoising parts
affect the performance? . 69

5.7.3. Does the noise removal in DDGMs generalize to other data
distributions? . 72

5.8. Conclusion . 73
5.9. Appendix . 75

5.9.1. Additional experiments . 75
5.9.2. Signal-to-noise ratio detailed plots 76

8

5.9.3. Examples of generations . 77
5.9.4. Training Dynamics . 77
5.9.5. Training Hyperparameters . 80
5.9.6. Computational details . 81
5.9.7. A comparison between DAED and DDGMs with more parameters 81

6. Learning Data Representations with Joint Diffusion Models 84
Preface . 85
Abstract . 86
6.1. Introduction . 86
6.2. Background . 88
6.3. Related Work . 88
6.4. Diffusion Models Learn Data Representations 89

6.4.1. UNet representations are useful for prediction 90
6.4.2. Diffusion models learn features of increasing granularity 90

6.5. Method . 91
6.5.1. Joint Diffusion Models: DDGMs with classifiers 91
6.5.2. An alternative training of joint diffusion models 93
6.5.3. Conditional sampling in joint diffusion models 93

6.6. Experiments . 95
6.6.1. Predictive performance of joint diffusion models 95
6.6.2. Generative performance of joint diffusion models 96
6.6.3. A comparison to state-of-the-art approaches 98
6.6.4. Semi-supervised learning of joint diffusion models 99
6.6.5. Domain adaptation with diffusion-based fine-tuning 100
6.6.6. Visual Counterfactual Explanations 101

6.7. Conclusion . 102
6.8. Appendix . 103

6.8.1. Training details and hyperparameters 103
6.8.2. Domain adaptation . 103
6.8.3. Additional results: Conditional generations with optimised

representations . 105
6.8.4. Additional results: Counterfactual image generation 106

7. Background – Continual Learning 108
7.1. Continual Learning Methods . 109

7.1.1. Methods based on regularisation . 109
7.1.2. Methods based on dynamic architectures 110

9

7.1.3. Methods based on replaying . 111
7.2. Continual Learning of Generative Models 114

7.2.1. Knowledge Consolidation with Generative Modelling 115

8. BinPlay: A Binary Latent Autoencoder for Generative Replay
Continual Learning 118
Preface . 119
Abstract . 120
8.1. Introduction . 120
8.2. Related Works . 123
8.3. Method . 123

8.3.1. Binary latent autoencoder . 124
8.3.2. Binary codes definition . 125
8.3.3. Binary codes assignment . 126
8.3.4. Training . 127

8.4. Experimental Study . 128
8.4.1. Results . 129
8.4.2. Future work . 131

8.5. Conclusions . 132

9. Multiband VAE: Latent Space Alignment for Knowledge
Consolidation in Continual Learning 134
Preface . 135
Abstract . 136
9.1. Introduction . 136
9.2. Related Works . 138
9.3. Method . 139

9.3.1. Knowledge Acquisition – Local Training 139
9.3.2. Shared Knowledge Consolidation . 139
9.3.3. Controlled Forgetting . 141

9.4. Experiments . 142
9.4.1. Evaluation Setup . 143
9.4.2. Evaluation . 143
9.4.3. Memory Requirements and Complexity 147

9.5. Conclusion . 147
9.6. Appendix . 149

10

9.6.1. Discussion on the task index usage in generative continual
learning . 149

9.6.2. Models architectures . 149
9.6.3. Real life CERN dataset . 151
9.6.4. Two latents Variational Autoencoder 152
9.6.5. Analysis of binary latent space . 153
9.6.6. Visualisation of generated samples 153

10. Discussion and Final Remarks 158
10.1.Future Outlook of Generative Artificial Intelligence 158
10.2.Open Questions . 158
10.3.Conclusion . 160

Bibliography 162

11

1. Introduction

Generative models gain increasing attention due to the number of remarkable
applications, where methods such as Variational Autoencoders (VAE) (Kingma and
Welling, 2014), Generative Adversarial Networks (GAN) (Goodfellow et al., 2014a)
or Diffusion-Based Generative Models (DDGMs) (Sohl-Dickstein et al., 2015) play
an important role. The most common ones include synthetic images generation
(Brock et al., 2018; Dhariwal and Nichol, 2021; Song et al., 2020a), with the exten-
sion to the methods creating new images from textual prompts such as DALLE2
(Ramesh et al., 2022) or Imagen (Saharia et al., 2022). Similarly, generative mod-
els are the core of modern speech synthesis systems (e.g. Kim et al. (2020); Popov
et al. (2021); Tinchev et al. (2023)) and music generation (Oord et al., 2016; Yang
et al., 2017). Apart from their creative usage, the same methods are also used for
scientific purposes. Several works employ recent generative models to speed up the
process of physical processes simulations (Deja et al., 2018; Paganini et al., 2018) or
the discovery of new drugs and molecules (Gupta et al., 2018; Blaschke et al., 2018).

The above-mentioned practical applications of generative models are usually
based on one of their fundamental properties – the possibility of sampling new data
points from the approximated training data distribution. While this is a significant
feature of generative models, in this work, we focus on the fact that in the pro-
cess of their training, generative models identify patterns hidden in data and learn
meaningful data representations that might be interesting to analyse and valuable
for different downstream tasks. In particular, latent variable models (e.g. VAE)
directly encode data samples such as images into lower-dimensional vectors known
as hidden factors that are later used for sampling and decoding into input data
space. Normalising flows (Rezende and Mohamed, 2015) including Glows (Kingma
and Dhariwal, 2018) are explicitly trained to map original data samples into a data
manifold through invertible operations. Even GANs designed without any notion
of latent representation are known to implicitly learn data representations by or-
ganising the input noise space in a meaningful way (Zhu et al., 2016; Creswell and
Bharath, 2018). Finally, recently proposed diffusion models generate new samples
in small steps, gradually removing random noise through numerous inner states
with temporal representations.

A common concept of creating a meaningful, usually low-dimensional space that

13

encodes individual features describing the original input data exists in all those
methods. For example, in terms of image, such features can describe the general
representation of human hair (its colour, length or style) instead of the individual
pixel values composing the whole haircut. Building such representations allows for
structuring knowledge devised from data that can be applied in downstream tasks,
or consolidated over time.

1.1. Research Questions

In this work, we focus on the inner-workings of different generative models tack-
ling three main research questions:

1. How can we encode data examples into representations useful for generative
modelling?

2. Can the internal data representations learned in an unsupervised way by gener-
ative models be useful outside of the generative modelling task?

3. How do the internal data representations change when retraining the model with
additional data? Can we consolidate the knowledge coming to the generative
model in separate tasks by aligning the latent data representations?

In the following chapters, we tackle the enlisted research questions, grouping
them into three parts as presented in Figure. 1.1.1. In the first group, called struc-
ture, we focus on the problem of how to encode data examples into representations
so that they are useful in generative tasks. The most common approach to this
problem, employed, for example, in VAE, is to encode data features into prior (e.g.
Gaussian) distribution. We overview such methods in Chapter 6.3. At the same
time, in this thesis, we propose and analyse several alternatives such as learnable
prior (Chapter 4), a diffusion process of learning representations (Chapters 5 and
6) and binary latent representations (Chapter 8).

In the second group referred to as applications, we discuss possible use cases
where data representations trained in an unsupervised way might be useful outside
of the generative modelling task. Numerous works described in Sec. 3.1.5 employ
this approach for tasks such as clustering, querying, and visualisation. As a part
of this thesis, we present our solutions where we use latent representations from
generative models in classification, semi-supervised learning, domain adaptation
(Chapter 6) and data compression (Chapter 8).

Finally, in the last group called consolidation, we move to the continual learning
setup. In this machine-learning paradigm, a model incrementally learns from a
stream of data over time without losing the ability to perform well on previously

14

Structure:

Task 1 Task 2 Task 3

Consolidation [8,9]

DDGM [5,6]

……
Binary [8]Learnable prior [4]

Applications:

Semi-SL [6]

Data representations

Domain adaptation [6]

Compression [8]
01010

Figure 1.1.1. In this thesis we focus on the data representations in generative models. In
the series of five works, we overview their structure, possible applications and usability
in continuous knowledge consolidation. Here, we show a graphical overview of this work,
where individual publications (indicated as Chapters in the brackets) are grouped in those
three main categories.

seen tasks. In Chapter 7, we formally introduce this setup and overview the works
on this topic. Once more, we focus on the generative models and their latent data
representations. In Chapters 8 and 9, we present our two methods that consolidate
knowledge coming to the model in parts, using the latent representations of the
generative models.

1.2. Thesis Contribution

The remaining of this work is structured as follows. In the next two chapters,
we introduce the background and related works on generative modelling. We pay
special attention to the representations within the existing methods. Similarly, in
Chapter 7, we introduce the problem of continual learning and the corresponding
existing methods on this topic. In Chapters 4, 5, 6, 8 and 9, we present the core
contributions of this thesis presented as a series of five publications described
below:

15

1.2.1. Generative autoencoder with limited latent space regularisation

Publication: Deja Kamil, Jan Dubiński, Piotr Nowak, Sandro Wenzel, Przemy-
sław Spurek, and Tomasz Trzciński. “End-to-end sinkhorn autoencoder with noise
generator.” IEEE Access 9 (2020).

In the first work (Deja et al., 2020), presented in Chapter 4, we focus on the
structure of data representations in the latent space of a generative autoencoder.
We adhere to the problem of prior and posterior mismatch in generative autoen-
coders, which is a source of low-quality generations. This issue arises when data
representations learned by a stochastic encoder are not perfectly regularised to the
fixed prior distribution used for sampling of the new examples.To mitigate this is-
sue, we propose a generative autoencoder that learns internal data representations
without regularisation. At the same time, we employ an additional neural network
to learn the mapping between the random Gaussian noise and the autoencoder’s la-
tent space, as presented in Figure 1.2.1. We use the Sinkhorn approximation of the
Wasserstein Distance to align a noise mapped through a non-linear multi-layered
perceptron with the encoded data representations. Our formulation with learnable
prior allows us to better cover the posterior distribution for more complex datasets.

Encoder Decoder
Data

Latent representations

Noise

Generator

𝑧~𝑁(0, 𝐼) - prior

Generations

Figure 1.2.1. We propose an End-to-end Sinkhorn autoencoder with noise generator, where
data representations are encoded freely into the latent space, while the prior distribution
is aligned through the additional MLP trained with a sinhorn approximation of the Wasser-
stein Distance.

With a series of experiments, we show that our model can achieve state-of-the-art
performance compared to other generative autoencoders. We evaluate our method
on standard benchmarks such as MNIST or CelebA and extend it to the real-case
scenario of High Energy Physics simulations.

The PhD Candidate, as the primary author, devised, implemented, and tested
the proposed method. Collaborating with co-authors, including physicists and ex-

16

perts affiliated with CERN, the PhD Candidate applied the idea in High Energy
Physics domain, to efficiently simulate the response of detectors to particle colli-
sions at CERN.

1.2.2. Analysis of the generative process in DDGMs

Publication: Deja Kamil, Anna Kuzina, Tomasz Trzciński, and Jakub M. Tom-
czak. “On analyzing generative and denoising capabilities of diffusion-based deep
generative models.” Advances in Neural Information Processing Systems 35, 2022,
(NeurIPS22).

In the second work (Deja et al., 2022a), presented in Chapter 5, we move to the
recently proposed Deep Generative Diffusion Models (DDGM). We once more focus
on the structure of data representations in generative models, this time understood
as temporal images refined by the backward diffusion process of DDGMs. We start
with an extensive analysis of this family of methods and evaluate how data points
generated by the backward diffusion process change with time. Our experiments
show an interesting insight that the decoder model of the DDGM changes its be-
haviour depending on the diffusion timesteps. We observe that at the early stage
of the backward diffusion process (closer to the noise), the model creates new data
features similar to those observed in the original training data. Simultaneously,
the same model applied to the late steps (closer to the final image) changes into
a standard denoising autoencoder and removes the remaining noise artefacts in a
data-agnostic way. Therefore, we conclude that Deep Generative Diffusion Models
can be seen as a combination of two parts – a generator that creates new data fea-
tures from the learned data distribution and a data-agnostic denoiser. We visualise
this observation in Figure 1.2.2.

Consequently, on top of this observation, we introduce a hybrid model dubbed
DAED that consists of a DDGM as a generative part and a simple denoising autoen-
coder that combines the last steps of the diffusion process. We postulate to model
those two networks with separate parameterisations. Through experiments, we
validate our proposition and show how it can improve the efficiency of the DDGMs.

The PhD Candidate, as the first author, played a key role in developing and
implementing the method, and in developing and conducting the analysis. Working
together with co- -authors, the PhD Candidate prepared the manuscript for publi-
cation and presented the findings at a conference. It is important to note that this
article was prepared during the PhD Candidate’s internship at Vrije Universiteit
Amsterdam.

17

Generator Denoiser

Backward diffusion process

Figure 1.2.2. We analyse how internal states of the diffusion generative models change in
the process of image generation. We observe that those methods can be split in two parts –
a generator that creates new data features, and data agnostic denoiser.

1.2.3. Data representation in DDGMs

Publication: Deja Kamil, Tomasz Trzciński, and Jakub M. Tomczak. “Learning
data representations with joint diffusion models”, accepted for European Confer-
ence on Machine Learning 2023 (ECML 2023).

In the third work (Deja et al., 2023), presented in Chapter 6, we delve further
into the previous chapter’s analysis of the representations structure in DDGMs and
extend it also to their applications. However, we deepen the analysis, by looking
for robust data representations inside the decoder model. Since most works in the
topic of diffusion-based generative modelling employ the UNet (Ronneberger et al.,
2015) architecture based on the encoder-decoder structure, we propose to treat the
output of the encoder part as internal data representations. We visualise this ap-
proach in Figure 1.2.3. In the first experiment, we show that such features encoded
with a DDGM trained in a fully unsupervised way, contain meaningful information
that can be used in downstream tasks such as classification. Moreover, in reference
to our previous work described above, we show that those representations change
with diffusion timesteps. We can observe that in the early backward diffusion steps
(closer to the noise), the model learns low-grain features such as hair colour in
the portrait photographs, while the same model applied to the latest steps encode
high-fidelity image attributes (e.g. necklace).

We propose to use this observation in a joint diffusion model that incorporates
the extracted representations as input for a classifier and optimises the entire net-
work jointly. Therefore, our one model employs a single parameterisation to cap-

18

Backward diffusion process

Figure 1.2.3. We propose to investigate latent representations of the denoiser trained as a
diffusion-based generative model. We show that those features encode useful information,
and propose a joint diffusion model with classifier that can be used for multiple downstream
tasks.

ture both the probability of an example and the marginal probability of its class
assignment. This improves the classification’s performance and allows for generat-
ing higher-quality guided samples. In a series of experiments, we also show how we
can benefit from such formulation in various applications. In particular, we demon-
strate how our joint model can be used in a semi-supervised setup, where learning
how to generate unlabelled examples can enhance the quality of shared represen-
tations and hence the performance of a classifier trained with limited amount of
labelled data. We use a similar approach for domain adaptation task, where we
adapt to a new domain with the generative part of our model without supervision.
Finally, we show how we can use the generative part of our model to explain the
classifier’s decision by generating counterfactual explanations.

This work was primarily devised by the PhD Candidate who conducted all of the
experiments with guidance from two supervisors.

1.2.4. Binary data representations for image compression with

autoencoder

Publication: Deja Kamil, Paweł Wawrzyński, Wojciech Masarczyk, Daniel Mar-
czak, and Tomasz Trzciński. “Bin-play: A binary latent autoencoder for generative
replay continual learning”. 2021 International Joint Conference on Neural Net-
works (IJCNN21).

In the fourth work (Deja et al., 2021), presented in Chapter 8, we evaluate al-
ternative – binary form of data representations structure, its application in data

19

compression and capability of consolidating knowledge. In particular, we focus on
the role of generative models in continual learning as an efficient method for stor-
ing past data examples useful for rehearsal. We present our method called BinPlay,
where we explore the possibility of using latent representations as the efficient data
compression mechanism. We first observe that current methods based on standard
methods such as VAE or GANs tend to lose the quality of the stored examples when
trying to generalise outside of the training set. Therefore, in our work, we leverage a
binary autoencoder for storing data examples efficiently as presented in Figure 1.2.4.
The goal of the autoencoder is to encode past samples into a set of predefined binary
codes living in its binary latent space. By parameterising the code computation for-
mula solely on the chronological indices of the training samples, our system can
compute the binary codes of rehearsed samples on-the-fly, without a need to store
them in the memory.

Encoder Decoder
Data

Binary latent

representations

Code

calculation

Data

Figure 1.2.4. We introduce BinPlay – a binary autoencoder for efficient storage of past
data examples in the problem of continual learning.

Our experiments show that such an approach provides a very efficient way for
storing past data examples without a drop in their quality usually observed in other
generative rehearsal methods. Thanks to that, we can observe a significant improve-
ment in the continually trained system when rehearsed with high-quality samples.

As the primary author of this publication, the PhD Candidate took the lead in
implementing and evaluating the method devised together with the co-authors. The
collaborative efforts resulted in the the manuscript that the PhD Candidate had the
privilege of presenting at a conference.

1.2.5. Continuous knowledge consolidation in variational autoencoder’s

latent space

Publication: Deja Kamil, Paweł Wawrzyński, Wojciech Masarczyk, Daniel Mar-
czak, and Tomasz Trzciński. “Multiband VAE: Latent Space Alignment for Knowl-

20

edge Consolidation in Continual Learning.”, Proceedings of the Thirty-First Inter-
national Joint Conference on Artificial Intelligence (IJCAI22).

Finally, in Chapter 9, we present the fifth work (Deja et al., 2022b) which focuses
directly on the knowledge consolidation in the latent representations of generative
model. To that end, we tackle the problem of continual learning of the variational
autoencoder. We first observe that existing methods evaluated primarily in artificial
scenarios fail to consider real-life situations where subsequently presented data
portions might share some similarity. Therefore, we propose to posit the goal of
continual learning of the generative model as a knowledge accumulation task. To
formalise this setup, we introduce a new knowledge consolidation scenario where
consecutive tasks share partially similarity by following the Dirichlet distribution
of classes. We show that our benchmark is considerably more challenging for the
majority of the related methods.

New

Encoder

New

Decoder

Knowledge

consolidation

Old

Decoder

Old data

representations

Old

Encoder

New data

representations

Translator

Figure 1.2.5. We propose Multiband VAE - a method for continuous knowledge consolida-
tion through alignment of latent representations in Variational Autoencoder.

To overcome the limitations of recent works, we introduce a Multiband VAE (Deja
et al., 2022b) - a method for continual knowledge consolidation through the align-
ment of the latent representations in the Variational Autoencoder. We postulate
that to consolidate knowledge coming to the model in sequence, we should divide
the model update process into two parts. In the first one, we learn new data rep-
resentations, while in the second, we use an additional neural network to map the
new data encoding with the previously learned ones as presented in Figure 1.2.5.
We also develop a controlled forgetting mechanism to improve the model’s plasticity,

21

allowing for selected samples to be overwritten by similar new data based on their
similarity in the latent space.

In the experiments, we show that Multiband VAE significantly outperforms re-
cent state-of-the-art methods in both: standard and the proposed knowledge con-
solidation scenario. Moreover, we show that our approach can at the same time
prevent forgetting past data examples and improve when retrained with partially
similar data. To our knowledge this is the first work where we can observe such
behaviour in continual generative learning.

The PhD Candidate, as the first author of this publication, played a crucial
role in the development, implementation, and evaluation of the proposed method.
Specifically, the PhD Candidate took responsibility for implementing the algorithm,
conducting ablation studies, and comparing the results to related works. Working
collaboratively with co-authors and supervisors, the PhD Candidate prepared the
manuscript for publication and had the opportunity to present it in-person at a
conference.

22

1.3. Publications Not Included in the Dissertation

1. Kamil Deja, Georgi Tinchev, Marta Czarnowska, Marius Cotescu, Jasha
Droppo. “Diffusion-based accent modelling in speech synthesis.”, accepted for
Interspeech 2023, (2023).

2. Zając Michał, Kamil Deja, Anna Kuzina, Jakub M. Tomczak, Tomasz Trzciński,
Florian Shkurti, and Piotr Miłoś. “Exploring Continual Learning of Diffusion
Models.”, Continual Learning Vision CVPR Workshop, (2023).

3. Tinchev Georgi, Marta Czarnowska, Kamil Deja, Kayoko Yanagisawa and
Marius Cotescu, “Modelling low-resource accents without accent-specific TTS
frontend.”, IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), (2023).

4. Deja Kamil, Ariadna Sanchez, Julian Roth, Marius Cotescu. “Automatic Eval-
uation of Speaker Similarity.”, Interspeech 2022, (2022)

5. Dubiński Jan, Kamil Deja, Sandro Wenzel, Przemysław Rokita, and Tomasz
Trzciński. “Selectively increasing the diversity of GAN-generated samples.”,
29th International Conference on Neural Information Processing (ICONIP),
(2022).

6. Masarczyk Wojciech, Paweł Wawrzyński, Daniel Marczak, Kamil Deja and
Tomasz Trzciński. “Logarithmic continual learning.”, IEEE Access 10, (2022).

7. Graczykowski Łukasz, Monika Jakubowska, Kamil Deja, Maja Kabus, and
the ALICE Collaboration. “Using machine learning for particle identification
in ALICE.” Journal of Instrumentation, (2022).

8. Masarczyk Wojciech, Kamil Deja, and Tomasz Trzciński . “On robustness
of generative representations against catastrophic forgetting.”, 28th Interna-
tional Conference on Neural Information Processing (ICONIP), (2021).

9. Deja Kamil, Tomasz Trzciński, Łukasz Graczykowski, and the ALICE Col-
laboration. “Generative models for fast cluster simulations in the TPC for the
ALICE experiment.”, Information Technology, Systems Research, and Compu-
tational Physics, (2020)

10. Deja Kamil. “Using Machine Learning techniques for Data Quality Monitor-
ing in CMS and ALICE experiments.”, Large Hadron Collider Physics (LHCP),
Proceedings of Science, (2019).

11. Trzciński Tomasz, and Kamil Deja. “Assigning quality labels in the high-energy
physics experiment ALICE using machine learning algorithms.”, Acta Phys.
Polon. Suppl., (2018).

Additional 130 co-authored articles published as a member of the ALICE Collabo-
ration.

23

2. Background

2.1. Generative Autoencoders

In this work, we propose to look at the generative autoencoders as a particular
case of the standard autoencoders- a type of neural network used for unsupervised
learning of data representations. The vanilla autoencoder consists of two parts:
an encoder qϕ that maps input data into the lower-dimensional representation z,
and a decoder pθ that decodes the representation back into original data space.
The encoder and decoder are typically trained to minimise the reconstruction error
between the input and the output

Lr = ||x− x̂||22, (2.1)

where x̂= pθ(qϕ(x)). Due to the bottleneck in the autoencoder’s architecture where
latent representation z is of lower dimensionality than the input, autoencoders
learn to group semantically meaningful data representations that might be used
for several tasks such as dimensionality reduction (Wang et al., 2016), representa-
tion learning (Vincent et al., 2010), image compression (Theis et al., 2017), anomaly
detection (Sakurada and Yairi, 2014; Alain and Bengio, 2014; Zhou and Paffenroth,
2017; Pol et al., 2019; Deja, 2019) or image search (Strub et al., 2016). Despite
their usefulness in different domains, vanilla autoencoder models trained with sole
reconstruction loss cannot be directly used as generative models. First of all, de-
terministic autoencoders can not describe continuous data distribution. Secondly,
without any regularisation, vanilla encoders encode examples into non-overlapping
distributions with discontinuities. While such formulation enables accurate recon-
structions, sampling from the created latent space is nearly impossible.

2.1.1. Variational Autoencoder

Therefore, in the Variational Autoencoder (VAE), Kingma and Welling (2014)
introduce a probabilistic autoencoder that enforces the multidimensional Gaussian
distribution in the autoencoder’s latent space. To that end, the output of the encoder
network is split into two parts. The first defines the mean of the Gaussian distribu-

25

tion µ, and the second one is its variance σ2. This changes the model into stochastic
encoder qϕ(z|x), that maps every single training example into the Gaussian distri-
bution N(µ(x),σ2(x)I). Additionally, the authors propose to change the deterministic
decoder into a stochastic version that models the marginal data distribution with
respect to the sampled latent representations p(x|z). With such formulation, the
reconstruction error of the Variational Autoencoder can be understood in a proba-
bilistic way as a maximization of the likelihood of x given a latent variable z:

Lr = Ez∼qϕ(z|x)[lnp(x|z)] (2.2)

Changing the autoencoder model into a probabilistic one resolves the problem
of gaps in the standard autoencoder’s latent space since every training example
can result in multiple latent representations z – and therefore occupy the area of
latent space instead of a single point. The remaining problem is to ensure that
all of the representations are arranged in the well-defined part of the hyperplane,
so that we can easily sample new instances. To that end, the authors propose a
regularisation in the form of Kullback-Leibler divergence that regularises the latent
Gaussian distribution to the Normal one. Therefore, the new training objective of
the VAE is a combination of reconstruction error and the regularisation term:

L = Ez∼qϕ(z|x)[lnp(x|z)]−KL[qϕ(z|x)||p(z)], (2.3)

where p(z) is a pre-defined prior distribution - usually a Normal Gaussian.
Finally, as a part of changing the vanilla autoencoder into the probabilistic

model, authors propose to sample latent representation z from variational posterior
qϕ(z|x). Unfortunately, this procedure breaks the gradient flow through the neural
network. To circumvent this issue in VAE authors use a reparametrisation trick
where a source of randomness is extracted outside the neural network. In partic-
ular, instead of sampling from the predicted Gaussian distribution N(µ(x),σ2(x)I),
authors propose first to sample a random noise ϵ∼N(0, I) and then calculate a sam-
pled latent representation z = µ(x)+ ϵ ·σ(x). By moving the sampling outside of the
VAE flow, this trick enables the model’s training with error backpropagation.

2.2. Generative Adversarial Networks

Generative Adversarial Networks (GANs) (Goodfellow et al., 2014a) implement
the conceptually opposite approach to generative modelling. Instead of encoding
examples into latent space from where they can be decoded or generated, GANs
are trained to directly sample from the prior distribution z ∼N(0, I) and then gen-

26

erate new instances. To that end, a model called generator Gθ is used to turn the
random noise into an object x. Since the generator creates new examples from
randomly sampled noise, it is impossible to train the model with reconstruction
error. Instead Goodfellow et al. (2014a) introduce an adversarial training with an
additional neural network called discriminator Dϕ. The generator and discrimi-
nator are trained simultaneously in a minimax game, where the first one tries to
generate samples that are indistinguishable from the real ones, while the second
one tries to distinguish between real and generated samples correctly. Precisely, we
can formalise that the discriminator solves the classification task by assigning 0 to
all fake data points and 1 to the real ones. Therefore, the loss of a discriminator
can is a binary cross entropy in the following form:

L = Ex∼preal

[
logDϕ(x)

]+Ez∼p(z)
[
log

(
1−Dϕ (Gθ(z))

)]
, (2.4)

where the left part is related to the performance on real data examples, while the
right the quality of generator in distinguishing the fake ones. Since the generator
tries to create images that are as similar to the original data as possible, its training
objective is to maximise the training objective of the discriminator. Therefore we
can write the following learning objective of the whole system:

min
θ

max
ϕ

Ex∼preal

[
logDϕ(x)

]+Ez∼p(z)
[
log

(
1−Dϕ (Gθ(z))

)]
(2.5)

Because of the minimax game, the parameters of the generator and discrimina-
tor have to be optimised in turns. In such a case, the decoder better distinguishes
fake and real examples. At the same time, the generator trained with a gradient
from constantly improving discriminator also progresses in generating examples
that mimic the original data samples with increasing accuracy.

Adversarial training has several advantages over the reconstruction error. Most
importantly, it does not suffer from the problem of averaged reconstructions, and
therefore GANs usually produce sharper and more exact images than VAEs. Never-
theless, there are two main drawbacks of this approach. Firstly, the minimax-based
training is unstable and often results in suboptimal solutions known as mode col-
lapse (Bau et al., 2019). Secondly, the GAN model does not have the capability of
encoding original data examples into meaningful representations. Therefore, this
work rarely refers to this family of methods.

27

2.3. Diffusion-Based Deep Generative Models

(DDGMs)

The last group of generative models we consider in this work is Diffusion-based
Deep Generative Models (DDGMs). In this thesis, we follow their formulation as
presented in (Ho et al., 2020; Sohl-Dickstein et al., 2015). DDGMs could be seen
as infinitely deep hierarchical VAEs with a specific family of variational posteriors
(Huang et al., 2021; Kingma et al., 2021; Tomczak, 2022; Tzen and Raginsky, 2019),
namely, Gaussian diffusion processes (Sohl-Dickstein et al., 2015). Given a data
point x0 and latent variables xt, . . . ,xT , we want to optimize the marginal likelihood
pθ(x0) = ∫

pθ(x0, . . . ,xT)dx1, . . . ,xT . We define the backward (or reverse) process as a
Markov chain with Gaussian transitions starting with p(xT)=N(xT ;0,I), that is:

pθ(x0, . . . ,xT)= p(xT)
T∏

t=0
pθ(xt−1|xt), (2.6)

where pθ(xt−1|xt) =N(xt−1;µθ(xt, t),Σθ(xt, t)). Additionally, we define the forward dif-
fusion process as a Markov chain that gradually adds Gaussian noise to the data
according to a variance schedule β1, ...,βT , namely, q(x1, . . . ,xT |x0) = ∏T

t=1 q(xt|xt−1),
where q(xt|xt−1) = N(xt;

√
1−βtxt−1,βtI). Let us further define αt = 1−βt and αt =∏t

i=0αi. Since the conditionals in the forward diffusion can be seen as Gaussian
linear models, we can analytically calculate the following distributions:

q(xt|x0)=N(xt;
√

αtx0, (1−αt)I), (2.7)

and
q(xt−1|xt,x0)=N(xt−1; µ̃(xt,x0), β̃tI), (2.8)

where µ̃(xt,x0)=
p

αt−1βt
1−αt

x0+
p
αt(1−αt−1)

1−αt
xt, and β̃t = 1−αt−1

1−αt
βt. We can use (2.7) and (2.8)

to define the variational lower bound as follows:

ln pθ(x0)≥ Lvlb(θ) :=Eq(x1|x0)[ln pθ(x0|x1)]︸ ︷︷ ︸
−L0

−DKL [q(xT |x0)‖p(xT)]︸ ︷︷ ︸
LT

−
T∑

t=2
Eq(xt|x0)DKL [q(xt−1|xt,x0)‖pθ(xt−1|xt)]︸ ︷︷ ︸

L t−1

. (2.9)

that we further optimize with respect to the parameters of the backward diffusion.

28

The conditional likelihood In this paper, we focus on images, thus, data is rep-
resented by integers from 0 to 255. Following Ho et al. (2020), we scale them linearly
to [−1,1]. As a result, to obtain discrete log-likelihoods, we consider the discretized
(binned) Gaussian conditional likelihood (Ho et al., 2020):

pθ (x0|x1)=
D∏

i=1

∫δ+
(
xi

0
)

δ−
(
xi

0
) N

(
x;µi

θ (x1,1) ,σ2
1

)
dx, (2.10)

where D is the data dimensionality of x0, and i denotes one coordinate of x0, and:

δ+(x)=
 ∞ if x = 1

x+ 1
255 if x < 1

δ−(x)=
−∞ if x =−1

x− 1
255 if x >−1

. (2.11)

Noise scheduling Originally, Ho et al. (2020) propose to linearly scale the noise
parameters βt (linear scheduling), e.g., scaling linearly from β1 = 10−4 to βT = 0.02.
In Nichol and Dhariwal (2021), authors suggest to increase the number of less noisy
steps through cosine scheduling: ᾱt = f (t)

f (0) , f (t)= cos
(t/T+c

1+c · π2
)2

, c > 0 with clipping the
values of βt to 0.999 to prevent potential instabilities at the end of the diffusion.

Training details In Ho et al. (2020), authors notice that a single part of the vari-
ational lower bound is equal to:

L t(θ)= Ex0,ϵ

[
β2

t

2σ2
tαt (1−αt)

∥∥∥ϵ−ϵθ

(√
αtx0 +

√
1−αtϵ, t

)∥∥∥2
]

, (2.12)

where ϵ ∼ N(0,I) and ϵθ is a neural network predicting the noise ϵ from xt. Since
we use (2.8) in the variational lower bound objective (2.9), and xt could be sampled
from the forward diffusion for a given data, see (2.7), we can optimise one layer at
a time. In other words, we can randomly pick a specific component of the objective,
L t, and update the parameters by optimising L t without running the whole forward
process from x0 to xT . As a result, the training becomes very efficient and learning
very deep models (with hundreds or even thousands of steps) is possible.

In Ho et al. (2020), it is also proposed to train a simplified objective that is a
version of (2.12) without scaling, namely:

L t,simple(θ)= Ex0,ϵ

[∥∥∥ϵ−ϵθ

(√
αtx0 +

√
1−αtϵ, t

)∥∥∥2
]

, (2.13)

where t is uniformly sampled between 1 and T. To further reduce computational and
memory costs, typically, a single, shared neural network is used for modelling ϵθ Ho

29

et al. (2020); Kingma et al. (2021); Nichol and Dhariwal (2021) that is parameterised
by an architecture based on U-Net type neural net Ronneberger et al. (2015). The
U-Net could be seen as a specific auto-encoder that passes all codes from the encoder
to the decoder.

3. Related Works

In this chapter, we overview works related to our main contributions. We first
focus on generative autoencoders and then move to the overview of novel methods
based on Diffusion-based generative models.

3.1. Generative Autoencoders

In the previous chapter, we introduced the general concept of generative au-
toencoder using a Variational Autoencoder as an example. In this section, we first
overview other common approaches implementing the same idea with some modi-
fications. We then present selected methods that focus on latent representations
from generative autoencoders and use them for different tasks.

3.1.1. Latent space regularisation in generative autoencoders

In Chapter. 3.1, we introduced Variational Autoencoder as the most popular im-
plementation of generative autoencoder. In VAE, an encoder maps data samples
into the latent space and decodes them while regularising the latent representation
to follow Normal distribution using a KL-divergence. Several works implement the
same principle differently, as overviewed by Chadebec et al. (2022). We summarise
those different approaches in Table 3.1.1 and briefly describe them in this section.

Following the works on Wasserstein GAN (Arjovsky et al., 2017), Tolstikhin et al.
(2017) introduces a Wasserstein Autoencoder (WAE), where the regularisation func-
tion is changed to Wasserstein distance. In particular, Tolstikhin et al. (2017) intro-
duce two possible methods for applying Wasserstein distance on the autoencoder’s
latent space. The first one is based on the maximum mean discrepancy (Gretton
et al., 2012) (MMD) technique, while the second one, similarly to Arjovsky et al.
(2017), uses a neural network as a critic. In the latter case, the encoder is trained to
store data examples in the latent space as close as possible to the prior distribution
with respect to the decision from the adversarially trained external module.

Similarly, Kolouri et al. (2018) present the Sliced-Wasserstein Autoencoder
(SWAE), which substitutes MMD with an approximation obtained by a cumula-
tive distribution of one-dimensional distances. The main innovation of SWAE is

31

the sliced-Wasserstein distance, a fast-to-estimate metric for comparing two distri-
butions based on the mean Wasserstein distance of one-dimensional projections.
This solution is much simpler, but as reported by Patrini et al. (2019), it results
in a lower diversity of generated results. Knop et al. (2020), present a modifica-
tion of this method known as the Cramer-Wold AutoEncoder (CWAE), where the
sliced Wasserstein distance is replaced with the CW-distance between distributions.
CWAE model can be seen as a version of the WAE-MMD method with a choice of a
specific Cramer-Wold kernel.

One more approximation of Wasserstein Distance is introduced by Patrini et al.
(2019) in the Sinkhorn Autoencoder (SAE). This work’s approximation is based
on the p-Wasserstein distance calculated in a latent space via backpropagation
through the Sinkhorn algorithm (Cuturi, 2013). Thus, SAE can work with different
metric spaces and priors with minimal adaptations. In particular, Patrini et al.
(2019) experiment with the normal and hypersphere prior.

Finally, in Adversarial Autoencoders, Makhzani et al. (2015) apply adversar-
ial training directly in the latent space of the generative autoencoder to enforce
alignment between the prior and posterior distribution. In this work, an additional
neural network is trained in a min-max game to align encoded examples with prior
data distribution.

3.1.2. Generative autoencoders with adversarial training

Apart from the adversarial autoencoders described in the previous section, where
adversarial loss was used as the regularisation term for generative autoencoders
latent space, there exits a group of method further influenced by the adversarial
training, using it instead of the reconstruction loss. Arora et al. (2017) and Arora
and Zhang (2017) noticed that training of a standard GAN is unstable and may
result in limited quantitative properties, while Variational Autoencoders converge
much better but tend to generate blurry samples when applied to natural images.
Therefore, several methods try to combine those two approaches, drawing from the
best parts of both worlds.

To that end, Zhu et al. (2022) propose Latently Invertible Autoencoder (LIA)
architecture, which employs an additional network in the latent space of VAE. The
decoder of LIA is first trained as a standard GAN with the invertible network. Then
the partial encoder is learned from a disentangled autoencoder by detaching the in-
vertible network from LIA. On the other hand, Pidhorskyi et al. (2020) introduce an
autoencoder architecture by modifying the original GAN paradigm. The generator
and discriminator are decomposed into two networks. In consequence, we obtain
two additional latent spaces, where we add regularisation terms. The model is op-

32

Table 3.1.1. Overview of regularisation methods in different generative autoencoders. We
compare recent methods with our solution described in Chapter 4.

Method Latent regularisation Comments

VAE (Kingma and Welling, 2014) Kullback-Leibler divergence
Variational scheme
– Averaged generations
– Limited performance on complex datasets

AAE (Makhzani et al., 2015) Adversarial
Adversarial training with discriminator:
+ High quality generations
– Training instability

WAE (Tolstikhin et al., 2017) Wasserstein distance
(MMD or adversarial approx.)

Two approximations: MMD or Critic
+ Fast to calculate (MMD)
- Unstable training (critic)

SWAE (Kolouri et al., 2018) Wasserstein distance
(Sliced approximation)

Sliced-Wasserstein distance approximation:
• Avg. Cost on one-dimensional projections
– Assumes independent encoding

SAE (Patrini et al., 2019) Wasserstein distance
(Sinkhorn approximation)

Sinkhorn approximation:
– Slow to compute
+ High quality generations

CWAE (Knop et al., 2020) Wasserstein distance
(Sliced + CW approximation)

Cramer-Wold kernel:
+ Faster to calculate

e2e SAE (Deja et al., 2020)
Chapter 4

Wasserstein distance
(Sinkhorn approximation)

Sinkhorn approximation
+ Trainable prior

timised by adversarial training. Larsen et al. (2016) introduce a similar approach
where the decoder of the generative autoencoder is trained directly as a GAN gen-
erator.

3.1.3. Hierarchical Variational Autoencoders

In the previous two sections, we discussed generative autoencoders where a sin-
gle encoder was used to map original data samples x into a latent variable z with a
single pass through a neural network. Such formulation has a significant property
– the variational inference used, for example, in VAE, enforces independence of all
latent variables. Therefore different latent dimensions encode potentially indepen-
dent data features. This idea, further explored in β-vae by Higgins et al. (2017),
sounds appealing, but independent data features learned by latent variable models
often entangle numerous attributes recognised by humans.

One possible solution to this problem comes with an observation that many con-
cepts we use to describe the world can be organised hierarchically so that the prop-

33

erties of one feature influence the possible properties of another. E.g., The general
property of the building that describes its size influences the style of the windows we
can see. In deep generative modelling, this solution is implemented in hierarchical
models, e.g., hierarchical variational autoencoders.

z1

z2

a) b)

d1

d2

x x

z1

z2

x

z1

z2

shared

z1

z2

x

Figure 3.1.1. Encoding and generative models for a) VAE and b) LadderVAE. Circles are
stochastic variables and diamonds are deterministic variables. Image from (Maaløe et al.,
2017)

In this family of methods, the latent variables are decomposed into multiple
levels, where each of them corresponds to a different degree of abstraction or gran-
ularity, as presented in Figure. 3.1.1. At each level, the model learns a separate set
of latent variables that capture different aspects of the data. The latent variables
at each level are assumed to be conditionally independent given the variables at
the level above, and the joint distribution over all the variables is modelled using
a product of Gaussian distributions. This idea is implemented in the top-down ap-
proach proposed in ResNet VAEs (Kingma et al., 2016) and Ladder VAE (Maaløe
et al., 2017), and further extended in BIVA (Maaløe et al., 2019), NVAE (Vahdat
and Kautz, 2020) and very deep VAE (Child, 2021).

3.1.4. Latent space geometry

There are several publications that focus on the latent space of generative au-
toencoders. A significant subset of those works relates to the problem of mismatch
between the aggregated posterior from the standard VAE and the preset prior. This
issue described by Makhzani et al. (2015); Hoffman and Johnson (2016); Tomczak
and Welling (2018); Nalisnick et al. (2019a) could be summarised as a situation
where there exists a region in the latent space, where aggregated posterior assigns
low probability, while at the same time, the prior probability is relatively high. In
such cases, generations from the VAE are often of low quality. We run a simple
experiment presented in Figure. 3.1.2 to demonstrate this issue. To that end, we
train a simple Variational Autoencoder with only two latent variables. We then en-

34

code all training examples into the latent space to sample the posterior probability
distribution. We visualise the encoded mean values of training data examples in
Figure 3.1.2a. As we can see, some regions of the latent space have high coverage of
training data, while in some areas, there are almost no training examples encoded.
Consequently, in Figure 3.1.2b, we present the relatively high-quality generations
sampled from high-density regions. Contrary in Figure 3.1.2c, we show generations
from the visible holes in the latent space that are often blurred and distorted.

To mitigate this issue, several methods propose learnable priors instead of the
fixed Gaussian distribution. The most straightforward implementation of this idea
employs a trainable Gaussian Mixture Model (GMM). However, there exist more
complex methods. Ziegler and Rush (2019) and Xiao et al. (2019) apply normalising
flows to learn the prior distribution in the latent space. With this approach, more
complex structures can be approximated through non-linear transformations from
flows Gaussian prior. Dai and Wipf (2019) introduce a similar solution with addi-
tional VAE in the latent space known as the TwoStageVAE model. As shown by
the authors, the second VAE model can correct the mismatch observed in the latent
space of the first model. On the other hand, Tomczak and Welling (2018) introduce
a new prior that is expressed as a mixture of variational posteriors (VampPrior).
The VampPrior consists of a mixture of Gaussians with components conditioned
on learnable pseudo-inputs. Such prior is implemented as a two-level hierarchical
model.

Recently, a novel method based on DDGMs was proposed to solve the problem
related to the prior-posterior mismatch in generative autoencoders. Rombach et al.
(2022) introduced a model known as Latent Diffusion, where a standard autoen-
coder encodes the high-resolution images into the latent space, where a diffusion
process runs between prior Gaussian and data representations. The synthesis of
new samples with this model consists of two steps: a new representation is first
generated through the backward diffusion process, followed by the decoding through
the decoder.

In this thesis, we tackle the problem of prior-posterior mismatch in chapter 4,
where we introduce our own method named: end-to-end Sinkhorn Autoencoder. Our
approaches alleviate the problem thanks to a learnable prior processed through an
additional neural network.

3.1.5. Application of data representations learned with generative

models

Apart from the prominent applications where generative models are used for
sampling new generations, there are interesting works where the same methods

35

3 2 1 0 1 2 3 4
Dimension 1

3

2

1

0

1

2

3

Di
m

en
sio

n
2

VAE latent space
Class

0
1
2
3
4
5
6
7
8
9

(a) Encoded training data

3 2 1 0 1 2 3 4
Dimension 1

3

2

1

0

1

2

3

Di
m

en
sio

n
2

VAE latent space - good generations
Class

0
1
2
3
4
5
6
7
8
9

(b) Good quality generations from high
posterior probability regions

3 2 1 0 1 2 3 4
Dimension 1

3

2

1

0

1

2

3

Di
m

en
sio

n
2

VAE latent space - bad generations
Class

0
1
2
3
4
5
6
7
8
9

(c) Bad quality generations from low posterior
probability regions

Figure 3.1.2. Visualisation of the VAE latent space with two latent variables trained on
the FashionMNIST dataset.

are used to extract relevant data features useful for downstream tasks. The most
straightforward application of features extracted from generative models is so-called
joint or hybrid modelling, where a single model is trained to serve as a generative
model and the classifier simultaneously. This means that a single neural network
learns data distribution p(x) and the marginal distribution p(y|x). We delve into

36

this idea in detail in chapter 6, where we introduce our joint diffusion model which
uses data representations from a DDGM to perform a classification task.

However, the usage of data features from generative models is also extended to
other tasks beyond generative modelling and classification. In particular, Tschan-
nen et al. (2018) overview the role of generative autoencoders in the general area
of representation learning. In this domain, an interesting approach is proposed
by Burgess et al. (2019) in the MONet model, where a VAE is trained together with
a recurrent neural network with an attention mechanism operating in its latent
space. This combination is used to decompose 3D scenes into semantically mean-
ingful components. Ding et al. (2021) further explore this technique, employing
features from the same architecture for visual reasoning.

Generative models play an essential role in the recent text-to-speech synthesis,
while several methods pay special attention to latent data representations features
in the generative speech synthesis model. Hsu et al. (2017) introduce a model based
on Variational Autoencoder that allows for latent space arithmetic operations. In
particular, authors show that by only manipulating the representations, they can
change the phonetic content or the speaker identity without parallel training data.
Tits et al. (2019) evaluate latent representations from different generative speech
synthesis models from the perspective of speech style. In particular, they focus
on latent features visualisation and interpretability. From a different perspective,
Chung et al. (2016) use sequence-to-sequence autoencoder to learn speech features
in an unsupervised way. Qian et al. (2020) and Chan et al. (2022) further explore
this idea, using autoencoder to disentangle them into several latent spaces that
encode information about language content, timbre, pitch, and rhythm. Such de-
composition enables multiple applications such as voice cloning (Wang et al., 2021a),
style transfer (Yuan et al., 2021) and mixup (Lee et al., 2021).

There is a growing interest in using generative models for biomedical studies (Wei
and Mahmood, 2020), including the specific applications where latent representa-
tions are of particular interest. For example, Lopez et al. (2018) propose to use
latent representations extracted from a variational autoencoder to cluster informa-
tion about cells or proteins in single-cell RNA sequencing. This idea was further
extended to cancer data integration by Simidjievski et al. (2019). Ding et al. (2018)
propose to use variational autoencoders to generate low-dimensionality represen-
tations to create interpretable RNA-data representations. The results of this work
are presented in Figure 3.1.3. A similar idea is introduced by Szymczak et al. (2022)
in HydrAMP, where a conditional VAE is used to learn a lower-dimensional space
of peptides’ representations in order to capture their antimicrobial conditions.

37

Figure 3.1.3. Comparison of the scvis method with TSNE. The original synthetic data
consisted of 2200 points divided into clusters (different colours) with randomly distributed
outliers visualised with TSNE (middle) or trained variational autoencoder (right). Image
from (Ding et al., 2018).

3.2. Diffusion Based Deep Generative Models

In Chapter 2.3, we introduced the basic setup of DDGMs. However, there are
several new extensions that enhance the generative capabilities of DDGMs. For
instance, Nichol and Dhariwal (2021) propose technical improvements such as a
loss-aware timestep sampling scheduler that selects the timestep for training with
a given example based on the accumulated loss value. Additionally, Nichol and
Dhariwal (2021) introduce a cosine base noise scheduler, where more noise is added
to the input at the latest forward diffusion steps.

Similarly, several works propose to improve the quality of samples from DDGMs
by conditioning the generations with class identities (Dhariwal and Nichol, 2021;
Tashiro et al., 2021; Ho and Salimans, 2022; Huang et al., 2022). To enhance
class-conditioned generations, Dhariwal and Nichol (2021) present a classifier-
-guided diffusion model. This method incorporates a gradient from an externally
trained classifier into the backward diffusion process to guide the generation to-
wards a specific target class. This idea was further extended by Ho and Salimans
(2022), where guidance from a classifier was substituted with a two-step synthesis,
where features generated unconditionally are removed from the features generated
with respect to the target class.

Furthermore, a plethora of applications based on DDGMs, such as DALLE2,
Imagen or Midjourney, combine the image generation task with text encoding. The
most common approach introduced by Ramesh et al. (2022) is to employ the addi-
tional text encoder, usually based on the BERT (Devlin et al., 2019) architecture.
The text encoder is aligned with the activations of the DDGM model through the
attention mechanism at different UNet levels with a Contrastive Language-Image
Pre-training (CLIP) (Radford et al., 2021). Text conditioning greatly improves the

38

quality of generated samples and allows for prompt-based guidance of the diffusion
process.

Song et al. (2020b) present a novel method that approaches diffusion-based mod-
elling from a different perspective. Specifically, the authors develop a diffusion
model based on the stochastic differential equation framework, where the diffusion
process is continuous and adheres to the Brownian motion principles (Brown, 1828).
In this work, instead of directly modelling the density of data distribution, neural
network is used to approximate the gradient of the log-likelihood function known
as score function. Thanks to the generalisation to SDE framework, in score-based
generative models the diffusion process is continuous during training and can be
approximated with any number of timesteps during inference.

From yet another perspective, Bansal et al. (2022) introduce a Cold-Diffusion
method where a diffusion process based on Gaussian noising is substituted with
several different deterministic degradation methods such as blur or masking. Sur-
prisingly, authors show that the standard approach generalises well to those tech-
niques, what calls into question the common understanding of DDGMs based on
noising.

3.2.1. Connection to hierarchical Variational Autoencoders

Several works have noted the connection of DDGM to VAEs. Huang et al. (2021)
focus on the continuous diffusion models and draw the connection to the infinitely
deep hierarchical VAEs. Kingma et al. (2021) further explore this path to formu-
late a VLB objective in terms of the signal-to-noise ratio and propose to learn noise
schedule, which brings the forward diffusion process even closer to the encoder of a
VAE. In a similar spirit, Vahdat et al. (2021) proposed a latent score-based genera-
tive model (LSGM), which can be seen as a VAE with the score-based prior.

3.2.2. DDGMs and data representation

Several works combine Diffusion-Based Generative Modelling with data repre-
sentation learning. The most pronounced combination is introduced by Rombach
et al. (2022), who decomposes the image generation process into two parts as pre-
sented in Figure. 3.2.1. First, a standard autoencoder is trained to freely encode
and decode the original data into the latent space (without any regularisation).
Then, a diffusion process is used to model the generation of image latent represen-
tations from prior noise. This work, known as latent or stable diffusion, achieves
comparable results while reducing the computational requirements compared to
the standard DDGM. This idea is further extended to a vector quantised diffusion

39

(VQ-Diffusion Gu et al. (2021)), where a VQ-VAE (van den Oord et al., 2017) instead
of a standard autoencoder.

Semantic

 Map

crossattention

Latent Space Conditioning

Text

Diffusion Process

denoising step switch skip connection

Repres

entations

Pixel Space

Images

Denoising U-Net

concat

Figure 3.2.1. The overview of the stable diffusion model. An external autoencoder (left)
is used to map original images into latent space, where a diffusion process is used to learn
data representations. In a process of denoising, a conditioning from text encoder is used
through a cross-attention layer at different UNet levels. Image from (Rombach et al., 2022).

There are several works that tackle the problem of learning data representations
with DDGMs. Abstreiter et al. (2021) introduce additional encoded information to
the score estimator, which allows them to use the score matching loss function for
learning data representations. Baranchuk et al. (2021) use activations from the
pre-trained diffusion UNet model for the image segmentation task. Other works
consider data representations from the UNet model within other generative mod-
els. Esser et al. (2018) introduce a conditional UNet-based variational autoencoder,
while Falck et al. (2022) show the connection between the UNet architecture and
wavelet transformation, applying it to the hierarchical VAEs.

3.3. Generative Models for High Energy Physics

In this work, we focus on the problem of learning representations with gener-
ative models. We evaluate our methods in several settings on the most commonly
used datasets. Nevertheless, apart from the artificial benchmarks, we also con-
sider a real-world scenario in the High Energy Physics (HEP) domain, which is an
interesting test-bed for practical applications of generative modelling. In particu-
lar, we consider the problem of simulating detector responses to particle collisions
in the ALICE experiment (Aamodt et al., 2008) within the Large Hadron Collider
at CERN (Evans and Bryant, 2008a). Recent HEP experiments rely heavily on
detailed simulations of the detector responses, as they, compared to the real-world
recorded data, allow for accurate reconstruction of the underlying physical phenom-
ena. Traditional approaches to this problem exploit monte-carlo based systems

40

such as GEANT (Incerti et al., 2018) to calculate every possible interaction be-
tween the particle and the experimental apparatus. Although this method provides
high-fidelity results, it is at the expense of the extensive computational cost. There-
fore multiple attempts are taken to replace the monte-carlo based approach with
new – potentially faster techniques such as generative models. The growing interest
in this problem resulted in the creation of the Fast Calorimeter Simulation Chal-
lenge (Giannelli et al., 2022), where three high-quality datasets with calorimeter
responses to particle collisions were prepared. This simplified the data-gathering
process and allowed researchers unrelated to physics to contribute to the topic.

η
z

φ

Figure 3.3.1. Visualisation of the calorimeter response to the particle. At different layers
of the detector a particle leaves its energy signature visible as voxels of different colours
corresponding to the deposited energy. Image from (Paganini et al., 2018).

The majority of current works in this field focus on GAN architectures, e.g. Calo-
GAN (Paganini et al., 2018) or (Khattak et al., 2018), where a 3D conditional Deep
Convolutional GAN architectures are used to simulate the response of the calorime-
ter of the ATLAS experiment visualised in Figure 3.3.1. This idea is further ex-
tended to the simulation of jet pairs by Di Sipio et al. (2019) and Erdmann et al.
(2019), where a Wasserstein GAN is used to simulate the calorimeter showers. Sim-
ilarly, (Kansal et al., 2021) employed GANs with message-passing architecture to
generate the cloud of particles. Lately, benefiting from the setup introduced with
CaloChallenge, Mikuni and Nachman (2022) introduced a method for fast simula-
tion based on DDGMs with score matching, while Cresswell et al. (2022) proposed
a method for calorimeter modelling by first learning their manifold and then esti-
mating the probability density.

In our previous work (Deja et al., 2018), we explore the possibility of simulat-
ing particle responses in the TPC detector with different generative models. Our

41

experiments indicated that by substituting the monte-carlo method with GANs,
we could speed up the simulation process by up to two orders of magnitude. In
this thesis, we explore the problem of fast simulation of calorimeter response. To
that end, in Chapter 4, we introduce a new generative model dubbed end-to-end
sinkhorn autoencoder, where we use a sinkhorn algorithm to approximate Wasser-
stein distance between the encoded examples and noise in the latent space of the
generative autoencoder. We propose the method together with its application to the
problem of calorimeter response simulation. Similarly to our work, Howard et al.
(2022) introduce a fast simulation method based on generative autoencoder, where
a Wasserstein distance approximation is used not only to align the latent features of
the model with the prior distribution but also to create a mapping between the the-
oretical models and actual experimental data. Howard et al. (2022) propose using
a Sliced Wasserstein Autoencoder to learn the latent space where both simulation
and experimental data are encoded simultaneously. This allows for fast simulation
of possible detector responses as well as probing and visualisation of the physical
properties of encoded real and theoretical data. Moreover, the authors show that
their method can be applied in practice by running a real-world physical analysis
such as Z-boson and top-quark decays.

3.4. Evaluation of Generative Models

Evaluation of generative models can be a challenging task since they are pri-
marily design to generate data, which makes traditional evaluation methods like
accuracy or precision less applicable. Instead, generative models are typically as-
sessed using a combination of quantitative and qualitative metrics.

Since some methods are directly trained to learn the data distribution, one way
to evaluate them is by calculating the likelihood of real (usually test) data under the
model. Higher likelihood values indicate better performance. However, estimating
likelihood can be computationally expensive, especially for complex models such as
DDGMs.

Therefore the more common methods involve some forms of perceptual metrics.
In particular, Inception Score (IS) by Salimans et al. (2016) employs an externally
trained classifier in a form of inception network Szegedy et al. (2015) to extract
conditional label distribution p(y|x) for all generated images. Images with meaning-
ful objects should have low entropy on conditional label distribution p(y|x). More-
over, we can measure the variance of generated images as the marginal distribution∫

p(y|x =G(z))dz.
This methods is further extended to Fréchet Inception Distance (Heusel et al.,

42

2017), where authors propose to extract features of training and generated data
using the Inception model in order to compare them with a Fréchet distance. The
closer the extracted features are, the better the generative model’s performance.

To disentangle the quality of generated samples from their diversity Sajjadi et al.
(2018) introduce precision and recall of the distributions that measures how well the
distribution of generated data features fits into the distribution of training examples
(Precision), and how well the training data features distribution is covered by the
generated data (recall). Those metrics are further improved by Kynkäänniemi et al.
(2019).

The FID metric and its extensions are commonly used to evaluate the perfor-
mance of new methods on well defined benchmarks such as CIFAR10/100, CelebA,
or ImageNet. However, as noticed by Kynkäänniemi et al. (2023) the application
of those methods to other datasets is limited and biased by the ImageNet classes.
Therefore in some cases (e.g. in a speech domain) researchers often relate to human-
-based perceptual evaluations of generated samples such as Mean Opinion Score
(MOS) or Multiple Stimuli with Hidden Reference and Anchor (MUSHRA) tests.

43

4. End-to-End Sinkhorn Autoencoder

With Noise Generator

Title End-to-End Sinkhorn Autoencoder With Noise Generator

Authors Kamil Deja, Jan Dubiński, Piotr Nowak,
Sandro Wenzel, Przemysław Spurek, and Tomasz Trzciński

Journal IEEE Access

Volume 9

Year 2020

DOI 10.1109/ACCESS.2020.3048622

Pages 7211 - 7219

Preface

In the previous sections, we overviewed recent works on generative models from
the perspective of data representations. In detail, we discussed generative autoen-
coders that encode original data samples into the latent space while regularising it
to follow desired parameterised distribution (e.g. Normal). This enforces the model
to encode different data features with independent Gaussian variables. While such
an approach is conceptually appealing, it can rarely be successfully implemented in
practice.

We describe this problem in section 3.1 and highlight that a prior fixed to the par-
ticular distribution might result in holes in the latent space of the generative model
with low posterior but high prior probability. Consequently, this issue reduces the
quality of the generations as the reconstructions sampled from the affected areas
are usually imperfect interpolations between significantly different original data
examples.

In this chapter, we focus on this problem and the general concept of the data
representation structure in the latent space of a generative autoencoder. We eval-
uate the representations and the methods for their regularisation to the prior dis-
tribution. To overcome the problem of prior-posterior mismatch, we introduce an
End-to-End Sinkhorn Autoencoder with Noise Generator – a generative autoen-
coder in which we propose an architecture that separates the process of encod-
ing data samples into latent representations from the process of sampling new in-
stances. In particular, we introduce an additional neural network that maps fixed
Gaussian prior to the freely encoded latent representation of the autoencoder. We
employ a Sinkhorn approximation of the Wasserstein distance as a regularisation
term that aligns encoded data examples with mapped noise. Our experiments show
that our approach can alleviate the problem of holes in the generative autoencoder’s
latent space, which improves the quality of generated samples.

45

Abstract

In this work, we propose a novel end-to-end Sinkhorn Autoencoder with a noise
generator for efficient data collection simulation. Simulating processes that aim
at collecting experimental data is crucial for multiple real-life applications, includ-
ing nuclear medicine, astronomy, and high energy physics. Contemporary meth-
ods, such as Monte Carlo algorithms, provide high-fidelity results at a price of high
computational cost. Multiple attempts are taken to reduce this burden, e.g. using
generative approaches based on Generative Adversarial Networks or Variational
Autoencoders. Although such methods are much faster, they are often unstable in
training and do not allow sampling from an entire data distribution. To address
these shortcomings, we introduce a novel method dubbed end-to-end Sinkhorn Au-
toencoder, that leverages the Sinkhorn algorithm to explicitly align distribution of
encoded real data examples and generated noise. More precisely, we extend au-
toencoder architecture by adding a deterministic neural network trained to map
noise from a known distribution onto autoencoder latent space representing data
distribution. We optimise the entire model jointly. Our method outperforms com-
peting approaches on a challenging dataset of simulation data from Zero Degree
Calorimeters of ALICE experiment in LHC, as well as standard benchmarks, such
as MNIST and CelebA.

46

4.1. Introduction

Figure 4.1.1. Schematic visualisation of end-to-end Sinkhorn Autoencoder processing
(left). T-SNE visualisation of latent space for MNIST dataset (right). Our conditional e2e
Sinkhorn Autoencoder (top) and conditional VAE (bottom). Our model does not restrict
latent space to the normal distribution, therefore classes may be even linearly separable.

Multiple real-life applications rely heavily on detailed simulations of ongoing
processes, from atomic structures in nuclear medicine (e.g. tomography) (Strulab
et al., 2003) or genetics (Incerti et al., 2018), to astrophysics (Zoglauer et al., 2006).
This is also true for the Large Hadron Collider (LHC) (Evans and Bryant, 2008b) –
one of the biggest scientific programmes currently being carried out worldwide. In
the LHC, two beams of particles are accelerated to the ultra-relativistic energies
and brought to collide. In such an environment, high energy density leads to the
appearance of very rare phenomena. To understand these processes, physicists
compare recorded data with accurate theoretical models simulations. Currently
employed simulation techniques use complex Monte Carlo processing in order to
compute all possible interactions between particles and matter. Such an approach
produces accurate results at the expense of high computational cost.

Therefore multiple attempts are taken to speed up this processing, including
those that leverage state of the art generative models (Paganini et al., 2018; Khattak
et al., 2018; Deja et al., 2018) such as Generative Adversarial Networks (Goodfel-
low et al., 2014a) (GANs) or Variational Autoencoders (Kingma and Welling, 2014)
(VAE). While the above methods are much faster than standard simulations, they
suffer from limitations which make them unsuitable for reliable real data simula-
tion tool. Training of Generative Adversarial Networks is often unstable and as
noticed by Arora et al. (2017); Arora and Zhang (2017) it may result in limited

47

quantitative properties. On the other hand, Variational Autoencoders converge in
steady manner. However, because of the maximum likelihood approximation they
also produce blurry results with both visual and statistical problems. In this work
we address those shortcomings, and propose a novel solution built on top of recent
advancements in generative modelling.

In particular, we propose a new generative model build on top of the Sinkhorn
Autoencoder introduced by Patrini et al. (2019). However, instead of restricting
autoencoder to encode examples on the parametrised distribution, we approximate
it with explicit noise generator implemented through the additional deterministic
neural network, as presented in Fig. 4.1.1. We input noise from a known distribution
(e.g. normal) to this network and encode it to match the distribution of real data in
the autoencoder’s latent space. Although such an approach allows us to generate
new data samples from a parametrised distribution, thanks to an additional neural
network, we do not regularise our encoder’s latent space with such constraints. To
our knowledge our end to end Sinkhorn Autoencoder is the first generative autoen-
coder without explicit constraint on the latent space.

On top of this approach, we extend our setup to conditional generative models.
Currently proposed methods such as conditional VAE (condVAE) (Sohn et al., 2015)
introduce additional conditioning parameters to the encoder and decoder. At the
same time condVAE regularises latent space to follow normal distribution. There-
fore, the model learns to encode information related to classes only in encoder and
decoder, while in latent space all of the examples are shuffled into a single manifold
as presented in Fig. 4.1.1. This behaviour limits classes separation, since they have
to be learned in decoder from one common continuous distribution.

In this work we introduce a conditional version of our solution. Contrary to
prior methods, we do not input conditional parameters into the encoder and decoder.
We allow autoencoder to encode different classes in different areas of the latent
space, while we match them with the conditional noise generator. Such an approach,
is more suitable for different (e.g. imbalanced) conditional classes. It allows to
encode data into a more natural, disentangled representations with clear classes
separation as depicted in Fig. 4.1.1.

We evaluate the quality of our standard and conditional end-to-end Sinkhorn Au-
toencoder with commonly used benchmark datasets, such as MNIST (LeCun et al.,
1998) and CelebA (Liu et al., 2015a), and achieve state-of-the-art results. To show
generalisation of our solution we then apply it to the problem of fast simulation of
particle showers in High Energy Physics (HEP). We show that our method allows to
generate high-quality calorimeter responses from the whole distribution of original
data. The superiority of our model is even more pronounced on this dataset.

48

The main contributions of this work are:
• A new non-adversarial end-to-end generative model with explicit noise gener-

ator.
• A novel conditional generative model based on the autoencoder architecture

which, contrary to the currently employed models, leaves the structure of au-
toencoder’s latent space intact.

The remainder of this work is organised as follows. In Sec. 6.3 we describe re-
lated works in the field of autoencoding generative modelling and fast simulations
for HEP. Sec. 4.3 introduces our end-to-end Sinkhorn Autoencoder method followed
by its conditional version. We conclude this work in Sec. 4.4, with experiments on
MNIST, CelebA and HEP datasets and a description of potential further studies.

4.2. Related Works

In this work, we relate to the generative autoencoder setup overviewed in Chap-
ter. 3.1. In particular, to the Sinkhorn Autoencoder (Patrini et al., 2019) we use
as a basis of our method. Contrary to this work, we focus on the prior-posterior
mismatch in generative autoencoders that result in low-quality image generations.

In this work, we address those limitations with our end-to-end sinkhorn autoen-
coder, by leveraging vanilla autoencoder as a method for learning low-dimensional
data representations that are approximated by additional neural network.

4.3. Sinkhorn Autoencoder with Noise Generator

In this section, we describe our new end-to-end Sinkhorn Autoencoder genera-
tive model. We first introduce the general overview presented in Fig. 4.3.1. Then,
we examine three parts of the final model optimisation objective: a reconstruction
loss, a Sinkhorn loss applied on the latent space, and additional regularisations.
Finally, we introduce a conditional version of our model.

In the Sinkhorn Autoencoder work Patrini et al. (2019) introduce a generative
model where the Sinkhorn algorithm is used to match the autoencoder’s latent
space with a known distribution. In our work, we leverage this analysis and present
an extended version of this method with a trainable prior approximator dubbed
noise generator implemented as a neural network. We train the noise generator
jointly with the encoder using the Sinkhorn loss applied on the latent space.

In Fig. 4.3.1 we demonstrate the general layout of our solution. It consists of
three neural networks – encoder qϕ, decoder pθ and noise generator nν. As presented

49

Encoder Decoder

Noise

generator

Latent

space ො𝒛
𝒛

𝒙 ෝ𝒙 = 𝑝𝜃(𝑞𝜙(𝒙))

𝝐 ∼ 𝑵(𝟎, 𝑰)

𝐿𝑟 = 𝒙 − ෝ𝒙 2
2

𝐿𝑆 = 𝑆𝑐,𝜉(𝒛, ො𝒛)

Figure 4.3.1. The architecture of the Sinkhorn Autoencoder with a neural network as an
explicit noise generator. Red arrows indicate the gradient flow. Reconstruction Loss Lr is
backpropagated through decoder and encoder, while Sinkhorn loss LS is propagated in two
directions to encoder and noise generator. Encoder network is optimised with a sum of LS
and Lr losses.

in Fig. 4.3.1, the loss of our model composes of two main terms - LS - Sinkhorn loss on
latent space and Lr reconstruction loss of the autoencoder. Additionally, to prevent
overfitting and promote diversity, we employ regularisations on both model weights
and autoencoder’s latent space.

4.3.1. Reconstruction loss

The core of our network is based on a standard autoencoder. Hence, it follows the
original autoencoder training procedure. The encoder is trained to map the original
data x into the latent space z, while the decoder is optimised to reconstruct original
data examples x̂. In this part, we experiment with two different losses. Standard
L2 norm loss L2 = ||x− x̂||22 is a simple choice, but as denoted by Bojanowski et al.
(2017) it may lead to blurry images. Therefore, following this work, we also employ
Laplacian pyramid LLap loss presented below:

LLap(x, x̂)=∑
j

22 j|L j(x)−L j(x̂)|1 (4.1)

where L j(x) is the j-th level of the Laplacian pyramid representation of x (Ling and
Okada, 2006).

Similarly to Bojanowski et al. (2017), as a final reconstruction objective we use
a weighted mean of the standard mean squared error and the Lap1 loss.

Lr(x, x̂)=αLLap(x, x̂)+L2(x, x̂) (4.2)

where α is a scaling parameter.

50

4.3.2. Sinkhorn loss

To map the generated noise onto autoencoder’s latent space, we leverage Sink-
horn algorithm (Cuturi, 2013). However, contrary to Patrini et al. (2019), we use
gradient obtained from this loss to optimize parameters of both our encoder qϕ and
additional network – noise generator nν. We train both of those models so that their
outputs – encoded data and encoded random noise – follow the same distribution in
the latent space.

This proceeds as follows. First, we encode the batch of original images x to obtain
their encoded representation z = qϕ(x). At the same time, we process a random
vector ϵ sampled from a known distribution (e. g. ϵ ∼ N(0,1)) through the noise
generator. It creates noise representation ẑ = nν(ϵ) in the same latent space as for
encoded images.

To calculate the distance between noise representations ẑ and data representa-
tions z we use the Wasserstein distance. Following WGAN or WAE architectures,
we could approximate this with an additional neural network, but to simplify the
solution, we opt for entropy regularisation of the Wasserstein distance implemented
with Sinkhorn algorithm.

For this purpose we follow (Genevay et al., 2017, 2018) to define the entropy
regularised Optimal Transport cost with ξ≥ 0 as:

S̃c,ξ(z, ẑ)= inf
Γ∈Π(z,ẑ)

E(z,ẑ)∼Γ[c(z, ẑ)]+ξ ·KL(Γ,z⊗ ẑ). (4.3)

As suggested in Patrini et al. (2019) we remove the entropic bias of the above
approximation with three passes of the Sinkhorn algorithm, as presented below:

Sc,ξ(z, ẑ)= S̃c,ϵ(z, ẑ)− 1
2

(S̃c,ϵ(z,z)+ S̃c,ϵ(ẑ, ẑ)) (4.4)

With the above equation we calculate the loss value for two representations of
encoded images z and generated noise ẑ in a batch-wise manner as Sc,ξ(z, ẑ). For the
Wasserstein cost function c we use standard 2-Wasserstein distance with euclidean
norm c(a,b) = 1

2 ||a− b||22. As indicated in Genevay et al. (2018) Sc,ξ deviates from
the original Wasserstein distance by approximately O(ξlog(1

ξ
), hence we keep our

ξ small to avoid the influence on network’s convergence. In practice, we use the
efficient implementation of the Sinkhorn algorithm with GPU acceleration from
GeomLoss package (Feydy et al., 2019).

51

4.3.3. End-to-end Sinkhorn Autoencoder objective

To improve the diversity of generated images, we include additional regularisa-
tion on the autoencoder’s latent space. For this purpose, we adapt diversity regular-
isation proposed in Ayinde et al. (2019) . In this work, authors compute a similarity
matrix SIMC to assess the diversity in the neural network’s weights according to
the cosine similarity between the outputs of consecutive layers.

We adapt this technique in our model to measure the similarity between all of
the encoded real data examples from the batch. Then, following Ayinde et al. (2019)
we compute the regularisation as a sum of these similarities as presented in 4.5:

Rs(z)= ρ
bs∑
i=1

bs∑
j=1, j 6=i

mi, j

(
SIMC

(
zi,zT

j

))2
(4.5)

where ρ is a scaling factor bs is batch size and m is a binary mask variable which
drops pairs below threshold τ.

mi, j =
{

1,
∣∣∣SIMC

(
zi,zT

j

)∣∣∣≥ τ

0, otherwise
(4.6)

Additionally, we also experiment with different regularisations on autoencoder’s
weights. In our experiments, we observed better convergence with L2 regularisation
on the last layer of our encoder.

Below we outline the joint loss function of our autoencoder as a sum of four
elements: reconstruction loss, Sinkhorn loss between generated noise and original
encoded images, and additional regularisation on the network’s latent space.

L =αLr(x, pθ(qϕ(x)))

+βSc,ξ((qϕ(x),nν(ϵ∼N(0,1))

+δRs(qϕ(x))

(4.7)

4.3.4. Conditional Sinkhorn objective

While the goal for most applications of generative modelling is to generate more
examples from a given distribution, for certain tasks we have to include additional
information about simulated data. This is also the case for HEP, where we want to
simulate possible responses of a calorimeter for a given particle. For the purpose
of conditional images generation, we propose a simple adjustment to the standard
version of our method.

Firstly, for a given batch of samples x with corresponding conditioning variables

52

y, we propose to pass the original conditional values to the noise generator as a sep-
arate input for the neural network. Thanks to this, we change our noise generator
to encode random noise ϵ with respect to conditional values y as ẑ= nν(ϵ,y).

Secondly, we train the noise generator and the encoder to encode examples with
similar conditional values near to each other in the latent space. For that purpose,
we first encode all of the examples x into their representation in the latent space
z. Then, for each example z ∈ z, we concatenate its encoding with corresponding
conditional values y ∈ y. We perform the same operation for noise latent representa-
tions ẑ and the same conditional parameters y from original training data. Finally,
we pass concatenated vectors through the Sinkhorn algorithm, calculating the loss
value.

Sc,ξ(qϕ(x)⊕y,nν(ϵ∼N(0,1),y)⊕y) (4.8)

, where ⊕ denotes vectors concatenation.
This approach aligns original data latent representations z for conditional val-

ues y with a noise embeddings ẑ conditioned on the same values y . For the Wasser-
stein2 metric the associated part of the loss fucntion value is equal to the euclidean
norm distance between different conditional values. However, depending on the
nature of the conditional information y and the potential real cost of generating
samples from the distribution related to other conditions, it might be beneficial to
scale it accordingly.

With such an approach, contrary to the other conditional generative models such
as conditional VAE or WAE, our solution leaves the original autoencoder’s latent
space intact. We do not enforce it to encode different classes into the single nor-
mal distribution. Thanks to the fact that conditional parameters are included in
the noise generator, we can observe that autoencoder distribute different classes in
separate areas of its latent space. We compare both exemplar latent spaces for the
MNIST dataset in figure Fig. 4.1.1.

4.4. Experiments

In this section, we evaluate the performance of our end-to-end Sinkhorn Autoen-
coder model in reference to other generative solutions. Primarily, we compare the
results of our experiments to other autoencoder based generative approaches. For
that purpose, we use two standard benchmarks: the MNIST dataset of handwrit-
ten digits LeCun et al. (1998) and CelebA dataset of celebrity face images Liu et al.
(2015a), cropped to 64x64 pixels. We also evaluate different conditional genera-

53

Table 4.3.1. Results comparison for conditional generative models on MNIST and HEP
datasets. Our conditional e2eSAE outperforms other conditional methods on both standard
benchmark as well as HEP dataset. In terms of the latter our model is able to simulate the
exact localisation of collision with very high accuracy.

MNIST HEP
Model FID Sinkhorn MAE Sinkhorn
cond VAE 6.61 30.13 23.13 (±65.53) 14.92
cond WAE (MMD) 34.73 30.44 43.54 (±55.23) 34.46
cond e2eSAE (ours) 4.11 24.92 13.50 (±29.82) 7.91
cond DCGAN 0.93 22.23 68.27 (±180.45) 6.95
original data 0.33 0 6.59 2.89

tive solutions, including the adversarial example of conditional Deep Convolutional
GAN Radford et al. (2015) on a challenging dataset of calorimeter response simula-
tions.

The dataset for the latter, which we call HEP, consists of 117 817 Zero Degree
Calorimeter responses to colliding particles, calculated with the full GEANT4 In-
certi et al. (2018) simulation tool. Each particle response simulation starts with
the single particle described with 9 attributes (mass, momenta, charge, energy, pri-
mary vertex). Particle is then propagated through the detector where simulation
tools are employed to calculate all of its interactions with the detector’s matter. The
final outcome of a simulation is the result of those interactions observed as a total
energy deposited in calorimeter’s fibres. Since those fibres are arranged in a grid
with 44×44 size, we can treat the final response as an image with 44×44 pixels.
Visualisation of such simulations is presented in Fig. 4.4.1. Although, resulting
images are non-deterministic, they are highly affected by initial particle attributes.
In principle, particle type (mass and charge) defines the trajectory of particle, while
its energy and momenta directly influence the luminosity of the response.

In our experiments, we use network architectures proposed in Wasserstein Au-
toencoder Tolstikhin et al. (2017). Therefore for the CelebA dataset, we use a con-
volutional deep neural network with 4 convolutional/deconvolutional layers for both
encoder and decoder with 5x5 filters. Additionally we use batch normalisation Ioffe
and Szegedy (2015) after each convolutional layer. For our noise generator, we use
a simple, fully connected network with 3 hidden layers and ReLU activations. We
optimise our networks with Adam Kingma and Ba (2014) in batches of 1000 exam-
ples.1

To assess the quality of generated samples we use Fréchet inception distance

1 Code for our work is available at https://github.com/KamilDeja/e2e_sinkhorn_autoencoder

54

https://github.com/KamilDeja/e2e_sinkhorn_autoencoder

Figure 4.4.1. Examples of calorimeters response simulations with different methods. Al-
though results from GAN are visually sound with collisions, model was not able to properly
capture relations from conditional values. Our solution does not reproduce all of residual
values, but it outperforms other methods in terms of accuracy of positioning for the most
significant centre of the collision.

(FID) introduced in Heusel et al. (2017). As proposed in Bińkowski et al. (2018), for
the MNIST dataset, we change the original Inception neural network to the LeNet
based convolutional classifier. While FID is criticised for approximating distribu-
tions with Gaussians Shmelkov et al. (2018), we also introduce a new measure to
monitor the diversity of generated examples. After propagating original and gen-
erated images up to the LeNet’s penultimate layer, we compare their distributions
with Wasserstein distance approximation implemented with Sinkhorn algorithm.
We refer to this measurement as Sinkhorn.

For the HEP dataset, we benefit from the fact that the original data is simulated,
hence we can assess the quality of generated samples on the basis of their physical
properties. Following the calorimeter’s specification Dellacasa et al. (1999), we sum
pixels of generated images into five channels. Calculated channels are usually em-
ployed for the calibration purposes, since they represent well the physical properties

55

(a) (b) (c)

Figure 4.4.2. T-SNE visualisation of generated examples (blue) and original mnist data
(red), processed through the LeNet model. Well trained DCGAN, without mode collapse,
reproduces the whole data distribution well, while VAE additionally produces images from
outside of real data distribution (between real classes). Our solution (right) generates only
examples within true data distribution but has minor problems with reproducing their
whole variety.

Table 4.4.1. Results comparison on the CelebA dataset. For competitive solutions we in-
clude the best of reported result. Our solution outperforms recent non-adversarial genera-
tive models.

CelebA
Model FID
VAE + Flow 65.7
SWAE 64
SAE (H) 56
VAE 55
WAE (MMD) 55
e2e SAE (ours) 54.5

of simulated collision. To assess the quality of generations we compare them to the
original full simulations by measuring mean absolute error between channels from
original and generated responses with the same input. In table 4.3.1 we refer to this
measurement as MAE. While original simulations are also non-deterministic and
there are several realistic outputs for the same particle, their general characteristic
captured by channels deviates by a small margin of 6.59 MAE. This error allows us
to measure how accurate our model is in terms of data generation with respect to
conditional values. To measure how well it reproduces the whole distribution of
channel values, we also calculate the Wasserstein distance between original and
generated channels distribution on the whole test-set.

As presented in Tab. 4.3.1, our conditional model outperforms other non-
-adversarial solutions on both MNIST and HEP datasets. As shown in Fig. 4.4.1,
HEP dataset remains challenging for all generative models. For VAE, we can see
the blurry generations as an outcome of regularisation with the normal distribu-

56

Figure 4.4.3. Samples of generated images from model trained on CelebA dataset. Our
model is capable of generating diverse, high quality images without blurred effect.

tion. Thanks to the adversarial training with discriminator instead of averaged
reconstruction error DCGAN produces visually more attractive results. However,
our end-to-end Sinkhorn Autoencoder with Noise Generator better captures rela-
tions between conditional parameters such as the centre of collision, what is of the
special interest in real data simulation.

For MNIST, we also visually analyse coverage of data distribution for evaluated
methods. As presented in T-SNE visualisation of LeNet penultimate layer activa-
tions in Fig. 4.4.2, our method has better coverage of original data than other au-
toencoder based approaches. As depicted in Fig. 4.4.2c, our model does not produce
examples outside of original data distribution. On the other hand, results from
the well-trained adversarial model (Fig. 4.4.2a) better overlaps with the full data
distribution of the MNIST dataset.

On the CelebA dataset, as demonstrated in table 4.4.1, our method outperforms
other competitive autoencoder based solutions. As displayed in figure Fig. 4.4.3,
our end-to-end Sinkhorn Autoencoder generates visually sharp images with high
variance.

57

4.5. Conclusions

In this work, we introduced a new generative model based on autoencoder archi-
tecture. Contrary to contemporary solutions, our end-to-end Sinkhorn Autoencoder
does not enforce encoding on any parametrised distribution. In order to learn the
distribution of standard autoencoder, we converge to it with an additional determin-
istic neural network, which we train together with an autoencoder. We show that
our solution outperforms other comparable approaches on benchmark datasets and
the challenging practical dataset of calorimeter response simulations. We postulate
that the general approach proposed in this work may also be used with other metrics
between probability distribution.

58

5. On Analyzing Generative and

Denoising Capabilities of Diffusion-based

Deep Generative Models

Title On Analyzing Generative and Denoising Capabilities
of Diffusion-based Deep Generative Models

Authors Kamil Deja, Anna Kuzina, Tomasz Trzciński, Jakub M. Tomczak

Conference Thirty-sixth Conference on
Neural Information Processing Systems (NeurIPS22)

Year 2022

Preface

So far, we have focused on one family of generative models known as generative
autoencoders, where data examples are encoded into the latent representation z
and decoded back with a marginal distribution p(x|z) with a single decoder. In such
an approach, data samples are encoded into representations with a single pass
through a neural encoder that maps the input into independent latent variables.
While it simplifies the process, the encoded features are often complex and hard to
understand. In Sec. 3.1, we describe hierarchical approaches, where latent features
are encoded one by one so that previous latent factors influence the future ones. In
this setup, learned latent features are more informative and can capture more com-
plex relationships between different data characteristics. As a result, hierarchical
VAEs can model a broader range of abstractions in the data by representing them
at different levels of granularity.

Those possibilities are further explored in deep generative diffusion models
(DDGMs). In this technique, images are “encoded” with a forward diffusion pro-
cess, where a Gaussian noise from a pre-defined distribution is iteratively added to
distort training data. New instances are generated in a backward diffusion process
that inverts the forward one. Specifically, a single decoder is applied numerous
times to convert randomly sampled noise into image features gradually. Although
there is no notion of latent space with hidden data features in such formulation,
in this chapter, we analyse the temporary working image updated in consecutive
diffusion steps.

Therefore, we focus on the structure of data representations in the DDGMs. In
the series of analysis, we show that those models can be roughly divided into two
parts based on the diffusion process. The first one generates new data features
similar to the one observed in the training data, while the second removes the re-
maining noise in a data-agnostic way. On top of this analysis, we introduce a hybrid
model, where we first use a DDGM denoiser to generate new data features, followed
by a deterministic denoising auto-encoder (DAE) that removes the remaining noise.
In this setup, we use the first model to learn data features from the training data
probability distribution, while the DAE is used only to improve image quality.

61

Abstract

Diffusion-based Deep Generative Models (DDGMs) offer state-of-the-art perfor-
mance in generative modelling. Their main strength comes from their unique setup
in which a model (the backward diffusion process) is trained to reverse the forward
diffusion process, which gradually adds noise to the input signal. Although DDGMs
are well studied, it is still unclear how the small amount of noise is transformed
during the backward diffusion process. Here, we focus on analysing this problem to
gain more insight into the behaviour of DDGMs and their denoising and generative
capabilities. We observe a fluid transition point that changes the functionality of
the backward diffusion process from generating a (corrupted) image from noise to
denoising the corrupted image to the final sample. Based on this observation, we
postulate to divide a DDGM into two parts: a denoiser and a generator. The de-
noiser could be parameterised by a denoising auto-encoder, while the generator is a
diffusion-based model with its own set of parameters. We experimentally validate
our proposition, showing its pros and cons.

5.1. Introduction

Diffusion-based Deep Generative Models (Sohl-Dickstein et al., 2015) (DDGM)
have recently attracted increasing attention, due to the unprecedented quality of
generated samples (Dhariwal and Nichol, 2021; Ho et al., 2022; Kingma et al., 2021).
The general idea behind this set of methods is to generate samples using diffusion
processes (Ho et al., 2020; Huang et al., 2021; Kingma et al., 2021; Song and Er-
mon, 2019; Song et al., 2020b). In the forward diffusion process, an image is passed
through a number of steps that consecutively add a small portion of noise to it. The
backward diffusion process is a direct reverse of the forward process, where a gener-
ative model is trained to gradually denoise the image. With a sufficient number of
the forward diffusion steps, noisy images approach isotropic Gaussian noise. Then,
generating new examples is possible by applying the backward diffusion to the noise
sampled from the standard Gaussian distribution.

While the performance of DDGMs is impressive, not all of their aspects are fully
understood. Intuitively, a DDGM is trained to remove small amounts of noise from
many intermediary corrupted images. Although this perspective is reasonable and
complies with the interpretation of DDGMs using stochastic differential equations
(Huang et al., 2021; Song et al., 2020b), it is still unclear how the small amount of
noise is removed during the backward diffusion process where images are composed
of almost entirely random values. The more adequate intuition might be that in its

62

Figure 5.1.1. Overview of the proposed Denoising Auto-Encoder with Diffusion (DAED).
To validate our hypothesis that DDGMs can be understood as a composition of a generator
and denoiser, we propose to explicitly model the denoising part with a separate denoising
autoencoder.

initial steps, a diffusion model does not only remove noise but also introduces a new
signal according to the distribution learned from the data. In this work, we further
investigate this observation to understand the balance between the generative and
denoising capabilities of DDGMs.

In particular, we aim to answer the following three questions in this paper: (i)
Is there a transition in the functionality of the backward diffusion process that
switches from generating to denoising? (ii) How does this split of functionality
affect the performance? (iii) Does the denoising part in DDGMs generalize to other
data distributions? As a result, the contribution of the paper is threefold:

• First, we analyze the noise distribution in the forward diffusion process and
how steps of the diffusion process are correlated with the reconstruction error.

• Second, based on our analysis, we postulate that DDGMs are composed of two
parts: a denoiser and a generator. As a result, we propose a new class of mod-
els that consist of a Denoising Auto-Encoder and a Diffusion-based generator
shortened as DAED. DAED could be considered as a variation of DDGMs with
an explicit split into the denoising part and the generating part.

• Third, we empirically assess the performance of DDGMs and DAED on three
datasets (FashionMNIST, CIFAR10, CelebA) in terms of data generation and
transferability (i.e., how DDGMs behave on different data distribution).

5.2. Background

In this work, we analyse Diffusion-Based Deep Generative Models. We follow
their formulation as introduced by Ho et al. (2020); Sohl-Dickstein et al. (2015) and
described in Chapter 2.3.

63

5.3. Denoising Auto-Encoders

Another class of models, Denoising Auto-Encoders (DAEs), is similar to DDGMs
in the sense that they also revert a known corruption process. However, DAEs are
trained to remove the noise in a single pass, and unlike DDGMs, they cannot gener-
ate new objects. Specifically, DAEs are auto-encoders that reconstruct a data point
x0 from its corrupted (noisy) version (Alain and Bengio, 2014; Bengio et al., 2013;
Chen et al., 2014; Vincent et al., 2008). Let us denote the auto-encoder by fφ(·).
Using the same notation as for DDGMs, the Gaussian corruption distribution is
q(x1|x0). Then, a DAE maximizes the following objective function:

ℓ(x0;φ)= Eq(x1|x0)
[
ln p

(
x0| fφ (x1)

)]
. (5.1)

and, in particular, for the Gaussian distribution with the identity covariance ma-
trix, we get the original objective for DAEs Vincent et al. (2008): ln p

(
x0| fφ (x1)

) =
−∥∥x0 − fφ (x1)

∥∥2 + const.

5.4. Related Works

Various modifications of DDGMs were recently proposed to improve their sam-
pling quality. This includes simplifying the learning objective and proposing new
noise schedulers, which allow DDGMs to achieve state-of-the-art results (Nichol
and Dhariwal, 2021; Dhariwal and Nichol, 2021). In this work, we show that split-
ting the decoder into two parts, namely, a denoiser and a generator, can benefit the
performance, especially when training with the variational lower bound.

Properties of DDGMs Ho et al. (2020) notice that DDGMs can be beneficial
for lossy compression, observing (Figure 5 in (Ho et al., 2020)) that most of the
bits are allocated to the region of the smallest distortion that corresponds to the
first steps of a DDGM. We draw a similar conclusion when discussing the denoising
ability of the diffusion model in Section 5.5. However, we base our analysis on the
signal-to-noise ratio rather than compression. On the other hand Salimans and Ho
(2022) focus on the computational complexity of DDGM and propose a progressive
distillation that iteratively reduces the number of diffusion steps. The work shows
that it is possible to considerably reduce the number of sampling steps without
losing performance. We believe that their results support our intuition that it is
reasonable to combine several initial steps into a single denoiser model. Benny
and Wolf (2022) evaluate how the diffusion process changes in time when model
is trained with different objectives (Eq. 2.12 or Eq. 2.13). They observe that the

64

image generation process differs significantly and that it is more beneficial to switch
between those two approaches at different stages of the diffusion. As mentioned in
Chapter 3.2 there are several works that draw connection between diffusion models
and hierarchical VAEs. In this work, we follow a similar direction and propose
to see a DDGM as a combination of a denoising auto-encoder with an additional
diffusion-based generator of corrupted images.

5.5. An Analysis of DDGMs

The core idea behind DDGMs is the gradual noise injection to images as we go
forward in time such that the final object is a sample from the standard Gaussian
distribution. Then, in the backward diffusion process model reverts this procedure
and, as a result, generates new objects. Therefore, understanding the success of
DDGMs relies heavily on understanding how the injected noise influences the be-
havior of both training and the model itself.

The noise distribution in the forward diffusion process The first question we
ask is how much corrupted an image gets after applying a specific noise schedule.
Following Ho et al. (2020); Kingma and Welling (2014); Nichol and Dhariwal (2021),
we can utilize the signal-to-noise ratio (SNR), expressed as the squared mean of a
signal (here: image) divided by the variance of a signal, to quantify the amount of
noise in xt. For this purpose, the quantity of interest is the forward diffusion for a
given x0, namely, q(xt|x0), that results in the following SNR:

SNR(x0, t)= αtx2
0

1−αt
. (5.2)

Similarly to Kingma et al. (2021), we formulate the forward diffusion in such a
way that the SNR is strictly monotonically decreasing in time, namely, SNR(x0, t)<
SNR(x0, s) for t > s. This means that an image becomes more noisy as we go forward
in time.

In Figure 5.5.1 (left) we plot the logarithm of the SNR for both linear (Figure
5.5.1.a) and cosine (Figure 5.5.1.b) noise schedules for two datasets (FashionMNIST
and CIFAR10). We average SNR over the x0’s (from the corresponding dataset).
The right column depicts the change of the log SNR, i.e., its discrete derivative
∆ logSNR(t) = logSNR(x0, t)− logSNR(x0, t−1). First of all, we can notice a point at
which the log-SNR drops below 0. This corresponds to the situation of the noise
overshadowing the signal. In the case of the linear noise schedule, this happens
after about 20% of steps, while for the cosine noise schedule, it appears after about

65

0.0 0.5 1.0

t/T

−10

0

lo
g

S
N

R
FashionMNIST

CIFAR10

0.0 0.5 1.0

t/T

−0.4

−0.2

0.0

∆
lo

g
S

N
R

FashionMNIST

CIFAR10

(a) Linear noise schedule

0.0 0.5 1.0

t/T

−10

0

lo
g

S
N

R

FashionMNIST

CIFAR10

0.0 0.5 1.0

t/T

−2

−1

0

∆
lo

g
S

N
R

FashionMNIST

CIFAR10

(b) Cosine noise schedule

Figure 5.5.1. Logarithm of the signal-to-noise ratio averaged over the dataset (solid line)
and its standard deviation, and the difference of the log SNR within two consecutive time
steps.

25−50% of steps. However, the transition occurs in both cases. The biggest changes
in the log-SNR are noticeable within the first 10% of steps. This may suggest that
the signal is the strongest within the first 10−20% of the forward diffusion process
steps, and then it starts being overshadowed by the noise.

The reconstruction error of DDGMs Since we know that the signal is not lost
within the first 10−20% of steps, the next question is about the reconstruction ca-
pabilities of DDGMs, namely, what is the reconstruction error of xt ∼ q(xt|x0). To be
clear, we are not interested in how much each step of a DDGM contributes to the
final objective (e.g., see Figure 2 in (Nichol and Dhariwal, 2021)) but rather how
well a DDGM reconstructs a noisy image xt.

0.0 0.1 0.2

t/T

0.0

0.1

0.2

M
A

E

FashionMNIST

CIFAR10

0.0 0.1 0.2

t/T

0.9

1.0

M
S

-S
S

IM

FashionMNIST

CIFAR10

Figure 5.5.2. The averaged reconstruction error
calculated using (left) the MAE, and (right) the
MS-SSIM at different steps of a DDGM.

In Figure 5.5.2 we plot the
Mean Absolute Error (MAE)
and the Multi-Scale Structural
Similarity (MS-SSIM) (Wang
et al., 2003) that both measure
the difference between an orig-
inal image x0 and a corrupted
image at the tth step xt re-
versed by the backward diffu-
sion. We present the values on two datasets (FashionMNIST and CIFAR10) for
the first 20% of steps. Apparently, after around 10% of the steps, the reconstruction
error starts growing, and the MAE increases linearly above 0.1 (i.e., about 6% of
error per pixel). At the same time, the MS-SSIM drops below 0.9−0.95 (i.e., the
discrepancy between original images and reconstructions becomes perceptually ev-
ident). This observation might suggest that DDGMs could be roughly divided into
two parts: a fraction of steps of a DDGM (e.g., first 10% of the steps) constitute a
denoiser that turns a corrupted image into a clear image, and the remaining steps
of the DDGM are responsible for turning noise into a noisy structure (a corrupted

66

image), i.e., a generator that generates meaningful patterns. In other words, we
claim that DDGM can be interpreted as a composition of a denoiser and a generator,
but the boundary between those two parts is fluid. Moreover, the denoiser gradually
removes the noise in a generative manner (i.e., by sampling xt−1 ∼ p(xt−1|xt)).

DDGMs as hierarchical VAEs In this paper, we postulate that DDGMs could be
seen as a composition of parts that serve different purposes. We can get additional
insight into our claim by noticing a close connection between DDGMs and hierar-
chical VAEs. As presented by Huang et al. (2021); Kingma et al. (2021); Tomczak
(2022), if we treat all xt’s with t > 0 as latents, and see the forward diffusion process
as a composition of (non-trainable) variational posteriors, DGGMs become a specific
formulation of hierarchical VAEs. On the other hand, we can start with a VAE with
a single latent variable, x1, for which the variational lower bound is equal to:

ln p(x0)≥ Ex1∼q(x1|x0) [ln p(x0|x1)]−DKL[q(x1|x0)||p(x1)]. (5.3)

Then, similarly to Vahdat et al. (2021); Wehenkel and Louppe (2021), the marginal
p(x1) could be further modeled by a DDGM. By keeping the dimensionality of x1 the
same as x0, and taking the variational posterior q(x1|x0) to be fixed and part of the
forward diffusion, we get the DDGM model. This perspective of combining a VAE
with a DDGM opens new possibilities for developing hybrid models.

5.6. DAED: Denoising Auto-Encoder with Diffusion

In this work, we propose a specific combination that distinctly splits the DDGM
into generative and denoising parts. As noted in the previous section, the signal in
the forward diffusion process is the strongest within the first 10−20% of steps, and,
thus, we postulate to perceive this first part of a DDGM as a denoiser. Together
with the observation about the combination of a VAE with a DDGM-based prior,
we consider turning a denoising auto-encoder into a generative model as presented
in Figure 5.1.1. We bring a DDGM-based part into DAE for generating corrupted
images. The resulting objective is the following:

ℓ(x0;φ,θ)= Ex1∼q(x1|x0)
[
ln p

(
x0| fφ (x1)

)+ ln pθ(x1)
]

(5.4)

≥ Ex1∼q(x1|x0)
[
ln p

(
x0| fφ (x1)

)]︸ ︷︷ ︸
ℓDAE(x0;φ)

+Eq(x2,...,xT |x1)

[
ln pθ(x1, . . . ,xT)
q(x1, . . . ,xT |x0)

]
︸ ︷︷ ︸

ℓD(x0;θ)

, (5.5)

67

where in (5.5) we introduce additional latent variables and the variational posterior
over them, that yields the variational lower bound. We call the resulting model DAE
with a Diffusion, or DEAD for short. In a sense, DAED is a DDGM with distinct
parameterizations of the part between x0 and x1, and the part for the remaining x’s.
Thus, DEAD is almost identical to a DDGM, but there are the following differences:
(i) We can control the amount of noise in q(x1|x0). It can correspond to the first step
of the forward diffusion model, or we can introduce more noise at once that would
correspond to several steps in the DDGM. (ii) We use two different parameteriza-
tions, namely, an auto-encoder (e.g., a U-Net architecture) for fφ(·) and a separate,
shared U-Net for modeling the DDGM from x1 to xT . Since there are two neural net-
works, the lower bound to the objective ℓ is in fact a composition of two objectives
with disjunctive parameters, namely, the objective for the denoiser, ℓDAE, and the
objective for the generator (i.e., the diffusion-based generative model), ℓD. (iii) In
the DAED, we introduce the denoiser explicitly and make a clear distinction between
the denoising and the generating parts while, as discussed earlier, this boundary is
rather fluid in DDGMs. By introducing DAED, we can analyze what happens if we
distinctly divide those two aspects with two separate parametrizations.

Moreover, we hypothesize that the resulting model may better generalize across
various data distributions due to decoupling the parameterization of the denoiser
and the generator. The training dataset may bias a single, shared parameterization
in a DDGM, and while denoising an image from a different domain, it may add some
artifacts from the source. While with two distinct parameterizations, there might
be a lower chance for that. We evaluate this hypothesis in the experiments.

5.7. Experiments

Experimental setup In all the experiments, we use a U-Net-based architecture
with timestep embeddings as proposed by Ho et al. (2020); Nichol and Dhariwal
(2021). We train all the models with a linear β scheduler and uniform steps sam-
pler to simplify the comparison. All implementation details and hyperparameters
are included in the Appendix (5.9.5) and code repository 1. For DAED, we use the
same architecture for both the diffusion part and the denoising autoencoder. We run
experiments on three standard benchmarks with different complexity: FashionM-
NIST (Xiao et al., 2017) of gray-scale 28×28 images, CIFAR-10 (Krizhevsky et al.,
2009) of 32×32 natural images, and CelebA (Liu et al., 2015b) of 64×64 photographs
of faces. We do not use any augmentations during training for any dataset. We re-
port results for both variational lower bound loss (VLB) (Sohl-Dickstein et al., 2015)

1 https://github.com/KamilDeja/analysing_ddgm

68

https://github.com/KamilDeja/analysing_ddgm

and simplified objective (Ho et al., 2020). Following Nichol and Dhariwal (2021) we
evaluate the quality of generations with Fréchet Inception Distance (FID) (Heusel
et al., 2017) and distributions Precision (Prec) and Recall (Rec) metrics (Sajjadi
et al., 2018) that disentangle FID score into two aspects: the quality of generated
results (Precision) and their diversity (Recall).

5.7.1. Is there a transition in functionality of the backward diffusion

process that switches from generating to denoising?

0.0 0.1 0.2

t/T

0.0

0.1

0.2

M
A

E

CelebA

CIFAR10

Figure 5.7.1. The MAE for a DDGM
trained on CIFAR10 and evaluated on CI-
FAR10 & CelebA, with a 0.95 confidence
interval.

In section 5.5, we investigate how the
signal-to-noise ratio and the reconstruc-
tion error of a DDGM change with the in-
creasing number of diffusion steps (see
Figure 5.7.1). Based on this analysis, we
postulate that DDGMs can be divided
into two parts: a denoiser and a gener-
ator. To determine the switching point,
we propose an experiment that answers
the following question:

Is there a denoising part of a DDGM
that is agnostic to the signal from the data?

To that end, we refer once more to the analysis of the reconstruction error (e.g.,
MAE) from different diffusion steps. This time, however, we compare the quality
of reconstructions with a single DDGM model trained on the CIFAR10 dataset and
then evaluated on CIFAR10 and CelebA. The result of this experiment is presented
in Figure 5.7.1. Interestingly, we notice that for approximately 10% of the initial
steps of the DDGM, there is a negligible difference in the reconstruction error be-
tween these two datasets. This fact may suggest that, indeed, the model does not
require any information about the background data signal in the first steps, and
it is capable of denoising corrupted images. However, after this point (about 10%

of steps), the reconstruction error starts growing faster for the dataset the model
was not trained on. This indicates that information about the domain becomes
important and affects performance.

5.7.2. How does splitting DDGMs into generative and denoising parts

affect the performance?

The results so far confirm our claims that DDGMs could be divided into denois-
ing and generative parts. Independently of a dataset, there appears to be a tran-

69

0246
log(SNR)

0

10

20

30
F

ID
FashionMNIST

0246
log(SNR)

0

10

20

30

F
ID

CIFAR10

0246
log(SNR)

0

10

20

30

F
ID

CelebA

(a) FashionMNIST (b) CIFAR10 (c) CelebA
Figure 5.7.2. The performance (FID) of DAED with different switching points with respect
to the logarithm of the signal to noise ratio (5.2) on three different datasets.

Table 5.7.1. FID Precision (Prec) and Recall (Rec) scores. For each row, we indicate the
length of the diffusion process (T) and the training objective (Loss). Best results in bold.

Model Fashion Mnist CIFAR10 CelebA
Loss T FID ↓ Prec ↑ Rec ↑ T FID ↓ Prec ↑ Rec ↑ T FID ↓ Prec ↑ Rec ↑

DDGM VLB 500 8.9 68 53 1000 26 53 54 1000 23 51 21
DAED β1 = 0.1 VLB 468 9.1 71 60 900 20 59 46 900 18 63 30
DAED β1 = 0.001 VLB 499 7.5 71 64 999 15 60 60 999 16 70 27
DDGM Simple 500 7.8 72 65 1000 7.2 65 61 1000 4.9 66 57
DAED β1 = 0.1 Simple 468 9.6 73 58 900 19 62 50 900 22 67 27
DAED β1 = 0.001 Simple 499 5.7 69 64 999 14.8 65 53 999 7.4 67 54

sition point at which a DDGM stops generating a corrupted image from noise and
starts denoising it in a generative manner. Here, we aim to verify whether it is
possible to do a clear split into a denoising part and a generating part. For this
purpose, we use the introduced DAED approach that consists of a DAE part (the
denoiser) and a DDGM (the generator) parameterized by two distinct U-Nets.

First, we consider a situation in which we train a DDGM using the simplified
objective (2.13) and then replace the first steps with a DAE. In other words, we
train a DAED in two steps: first the DDGM and then the DAE. This experiment
aims to check how the decoupling of the DDGM into two parts influences the model
performance. In Figure 5.7.2 we present the dependency between the log-SNR at
the splitting point and the FID score. In all cases, the performance of DAED is
comparable to the DDGM if we replace the DAE with up to the 10% of the steps that
correspond to log(SNR) is equal to around 4. For more complicated datasets like
CIFAR10 and CelebA, fewer steps could be replaced. This effect could be explained
by the fact that images in these datasets have three channels (RGB), and removing
noise is more problematic. That outcome reconfirms our presumptions that it is rea-
sonable to split the DDGM since the final performance is not significantly affected
by the division for an adequately chosen splitting point.

70

Figure 5.7.3. Examples of generations from DAED
with the same noise value and different switching
points.

To get further insight
into the qualitative perfor-
mance, in Figure 5.7.3 we
demonstrate how the selec-
tion of the splitting point
with respect to the Signal
to Noise Ratio (SNR) af-
fects the quality of final
generations2. We present
non-cherry-picked samples from
DAED trained in the same
manner as described in the
previous paragraph. As ex-
pected, the more noise the
DAE part (the denoiser) must deal with (see the values of β1 in Figure 5.7.3), the
fewer details in the generations there are. These samples again indicate that by
replacing some steps with a denoiser, we get a trade-off between ”cleaning” the cor-
rupted image or, in fact, further generating details. It seems that there is a sweet
spot for perceptually appealing images that contain details and are ”smooth” at the
same time, see β1 = 0.025 in Figure 5.7.3. However, as it is typically difficult to
provide convincing arguments by staring at samples, we further propose to analyze
quantitative measures.

In Table 5.7.1, we compare the performance of DAED against the DDGM on Fash-
ionMNIST, CIFAR10, and CelebA in terms of FID, Precision and Recall scores. We
want to highlight that our goal is not to achieve SOTA results on the before-mentioned
datasets but to verify whether we can gain some further understanding and, po-
tentially, some improvement by splitting the denoising and generative parts. We
consider two scenarios, namely, learning a DDGM and DAEDs using either the vari-
ational lower bound (VBL) or the simplified objective (Simple) with various lengths
of the diffusion. Interestingly, DAED outperforms the DDGM when these models
are trained using the VBL loss. For the simplified objective, DAED trained with
the same number of diffusion steps yields slightly lower performance than standard
DDGMs. As indicated by the Precision/Recall, generations from DAED are as pre-
cise as those from DDGM. However, they lack certain diversity, probably due to the
smoothing effect of the DAE part. Detailed results for other setups are presented
in Appendix 5.9.1.3

2 Generations for all datasets are presented in Appendix 5.9.3
3 In Appendix 5.9.7 we show that increasing the number of parameters of DDGMs to be compa-

rable to DAED does not lead to significant performance improvements.

71

5.7.3. Does the noise removal in DDGMs generalize to other data

distributions?

The last question we are interested in is the generalizability of DDGMs to other
data distributions. We refer to this concept as transferability for short. In other
words, the goal of this experiment is to determine whether we can reuse a model or
its part on new data with as good performance as possible. In this experiment, we
rely on the results presented in Section 5.7.1 where roughly the first 10% of steps
could be seen as the denoising part. To further strengthen this perspective, we also
utilize DAED with an explicit division into the denoising and generating parts.

Table 5.7.2. Reconstruction errors measured by MAE (↓), MS-SSIM (↑) for images noised
with β1 = 0.1. *To evaluate models trained on CIFAR10, we downscale CelebA to 32×32.
Best results in bold.

Target dataset CIFAR10 CIFAR100 CelebA*
Source Dataset Model MAE MS-SSIM MAE MS-SSIM MAE MS-SSIM

CIFAR10
DDGM VLB 0.091 0.94 0.097 0.94 0.093 0.95
DDGM Simple 0.085 0.95 0.097 0.94 0.096 0.95
DAED 0.065 0.97 0.074 0.97 0.068 0.97

ImageNet
DDGM VLB 0.113 0.93 0.110 0.93 0.077 0.96
DDGM Simple 0.113 0.94 0.111 0.93 0.068 0.96
DAED 0.071 0.97 0.071 0.97 0.050 0.98

First, we consider the case in which we compare the reconstruction errors mea-
sured by the MAE and the MS-SSIM. In this scenario, we train a DDGM on a source
dataset and then assess it on a target dataset. We use CIFAR10 or ImageNet (32x32
or 64x64) as source data and CIFAR10, CIFAR100, or CelebA as target data. For
each image from the target dataset, we apply the DAE part of DAED to obtain the
reconstruction or 793 steps of the forward and backward diffusion in the case of the
DDGM, which corresponds to the same level of added noise. For this experiment,
we use the pre-trained DDGM from Nichol and Dhariwal (2021) that consists of
4000 steps and uses the cosine noise scheduler. The results are outlined in Table
5.7.2. First of all, there is no significant difference in the performance of DDGMs
trained with either the VBL objective or the simplified objective. They achieve a
quite satisfactory MAE and MS-SSIM scores. However, DAED outperforms the
DDGMs, obtaining much better transferability. We explain it by the fact that prob-
ably, with each step in the denoising part DDGM adds details that are typical for
source data while DAED focuses on removing noise and produces a smoother output.
This outcome may further suggest that splitting DDGMs into two parts with two
separate parameterizations is reasonable and even beneficial.

72

To get further insight into the transferability behavior, we present a few (non-
-cherry–picked) examples from CelebA in Figure 5.7.4.a and four toy examples in
Figure 5.7.4.b. We use the same setup as explained in the previous paragraph (i.e.,
the pre-trained DDGM provided by Nichol and Dhariwal (2021)), and the images
are noised with β1 = 0.1. In columns 3–6 in Figure 5.7.4.a, we present reconstruc-
tions for the DDGM trained on CelebA, the DDGM trained on ImageNet, DAED
trained on CelebA, and DAED trained on ImageNet, respectively. It becomes ap-
parent that the DDGM trained on CelebA denoises the image by generating new
details while DAED denoises by smoothing. Interestingly, DAED performs better
than the DDGM when we use ImageNet-trained models to denoise CelebA. In Fig-
ure 5.7.4.b, we depict several toy examples that were denoised with the DDGM and
DAED trained on CIFAR10. We see that the DDGM adds many details that are arti-
facts from the source data. It seems that DAED does not suffer from that behavior.

(a) Reconstructions on CelebA (b) Toy examples
Figure 5.7.4. (a) Denoising of image with 0.1 noise using either DAED or the corresponding
number of the DDGM steps. (b) Four noisy toy examples denoised by DAED and the DDGM.

5.8. Conclusion

In this work, we investigate the generative and denoising capabilities of the
Diffusion-based Deep Generative Models. We observe and experimentally validate
that it is reasonable to understand DDGMs as a combination of two parts. The first
one generates noisy samples from the pure noise by inputting more signal from a
learned data distribution, while the second one removes the remaining noise from
the signal. Although for standard DDGMs, the exact switching point between those
two parts is fluid, we propose a new approach dubbed DAED that is explicitly built
as a combination of a generative component (a DDGM) and a denoising one (a DAE).

73

In the experiments, we observe that DAED simplifies training with a standard
VLB loss function that leads to improved performance. On the other hand, with
increasing noise processed by DAE, DAED smoothens the generations resulting in
lower performance when training with the simplified objective. We further show
that DDGMs, and DAED especially, generalize well to unseen data, what opens
new possibilities for further research in terms of transfer or continual learning of
DDGMs.

74

5.9. Appendix

5.9.1. Additional experiments

In this section, we present extended evaluation of all models introduced in the
main work. Following Nichol and Dhariwal (2021), we show the assessment of gen-
erations quality in terms of additional metrics namely Inception Score (Salimans
et al., 2016) and spatial Fréchet Inception Distance (Nash et al., 2021) – a version
of standard FID score but based on spatial image features.

Table 5.9.1. Extended evaluation results for CIFAR10 dataset.

Model CIFAR-10
Loss T IS ↑ FID ↓ sFID ↓ Prec ↑ Rec ↑

DDGM VLB 1000 7.6 26.1 10.5 54 55
DAED β1 = 0.1 VLB 900 8.2 20.4 16.1 59 46
DAED β1 = 0.025 VLB 979 7.7 22.4 15.8 57 53
DAED linear VLB 999 8.1 14.5 9.8 60 59
DDGM Simple 1000 9.5 7.2 8.6 65 61
DAED β1 = 0.2 Simple 891 7.8 29.4 24.7 53 40
DAED β1 = 0.1 Simple 900 8.0 19.0 14.9 62 50
DAED β1 = 0.025 Simple 979 8.6 14.2 14.6 60 53
DAED β1 = 0.001 Simple 999 9.1 14.9 10.1 66 54

Table 5.9.2. Extended evaluation results for CelebA dataset. Additionally to standard
models, we also include evaluation for DAED setup where DAE model is trained only on
ImageNet dataset.

Model CelebA
Loss T IS ↑ FID ↓ sFID ↓ Prec ↑ Rec ↑

DDGM VLB 1000 2.4 23.1 37.3 51 21
DAED β1 = 0.1 VLB 900 2.9 18.2 23.9 63 31
DAED β1 = 0.025 VLB 979 2.7 25.4 35.8 64 17
DAED linear VLB 1000 2.6 16.8 23.6 70 27
DDGM Simple 1000 3.0 6.1 14.7 66 56
DAED β1 = 0.2 Simple 890 2.7 21.0 31.2 63 22
DAED β1 = 0.1 Simple 900 3.0 17.0 23.3 66 31
DAED β1 = 0.025 Simple 979 2.7 15.1 17.6 64 38
DAED β1 = 0.001 Simple 999 2.8 6.2 11.0 69 55
DAED (IN) β1 = 0.1 Simple 900 2.9 25.6 30.5 44 29

75

Table 5.9.3. Extended evaluation results for Fashion MNIST dataset.

Fashion Mnist
Loss T IS ↑ FID ↓ sFID ↓ Prec ↑ Rec ↑

DDGM vlb 500 4.1 8.9 11 68 53
DAED β1 = 0.1 vlb 468 4.06 9.1 13 71 60
DAED β1 = 0.025 vlb 489 4.02 9.7 11 70 62
DAED linear vlb 499 4.1 7.5 11.3 70.5 64
DDGM Simple 500 4.3 7.8 9.03 71.5 65.3
DAED β1 = 0.3 Simple 426 3.78 18 24 73.8 41
DAED β1 = 0.2 Simple 445 3.87 14 20 74.8 47
DAED β1 = 0.1 Simple 468 3.95 9.6 11.2 73.2 58.4
DAED β1 = 0.025 Simple 489 4.05 7.36 13 73 61
DAED β1 = 0.001 Simple 499 4.3 5.7 11.3 69.3 64.2

5.9.2. Signal-to-noise ratio detailed plots

In this section we present detailed signal-to-noise ratio (SNR) plots that are used
for analysis in Sec. 5.5 for all evaluated datasets. Independently on the original
dataset, SNR changes in the similar manner – with the most drastic loss in the
first 10% steps.

76

0.0 0.5 1.0

t/T

−10

0

10

lo
g

S
N

R

linear

cosine

0.0 0.5 1.0

t/T

−2

−1

0

∆
lo

g
S

N
R

linear

cosine

(a) FashionMNIST

0.0 0.5 1.0

t/T

−10

0

10

lo
g

S
N

R

linear

cosine

0.0 0.5 1.0

t/T

−2

−1

0

∆
lo

g
S

N
R

linear

cosine

(b) CIFAR10

0.0 0.5 1.0

t/T

−10

0

10

lo
g

S
N

R

linear

cosine

0.0 0.5 1.0

t/T

−2

−1

0

∆
lo

g
S

N
R

linear

cosine

(c) CelebA

Figure 5.9.1. Signal-to-noise ratio and its discrete derivative for each of the three datasets:
(a) FashionMNIST, (b) CIFAR10 and (c) CelebA.

5.9.3. Examples of generations

In this section we present generations for all datasets with different models we
compare in this work.

5.9.4. Training Dynamics

How does the objective of a diffusion model change in time? In the standard
DDGM setup, a single model is optimized with a joint loss from all of the diffusion
steps. However, as depicted in Fig 5.9.8a, different parts of the diffusion contribute
to the sum differently. In fact, the first step of the diffusion is already responsible for
75% of the whole training loss, while first 1% of steps contributes to over the 90% of
the training objective. This observation implies that a single neural network applied
to all diffusion steps is mostly optimized to denoise the initial steps. In Fig. 5.9.7

77

(a) DDGM (b) DAED β1 = 0.1 (c) DAED β1 = 0.001

Figure 5.9.2. Generations from different models trained on FashionMNIST dataset. All
models were trained with Simple loss function.

(a) DDGM (b) DAED β1 = 0.1 (c) DAED β1 = 0.001

Figure 5.9.3. Generations from different models trained on CIFAR10 dataset. All models
were trained with Simple loss function.

(a) DDGM (b) DAED β1 = 0.1 (c) DAED β1 = 0.001

Figure 5.9.4. Generations from different models trained on CelebA dataset. All models
were trained with Simple loss function.

78

(a) DDGM (b) DAED β1 = 0.1 (c) DAED β1 = 0.001

Figure 5.9.5. Generations from different models trained on CelebA dataset with original
VLB loss function.

(a) DAED β1 = 0.1

Figure 5.9.6. Generations from DAED model where DDGM part was trained on CelebA
dataset while DAE on ImageNet.

79

0.0 0.2 0.4 0.6 0.8 1.0

t/T

10−4

10−1

N
L
L

NLL start

NLL 2% of training

NLL final

Figure 5.9.7. Dynamics of the negative log likelihood for different steps of standard DDGM
trained on CIFAR10 with VLB objective. Already after 2% of training time, pθ converges to
very low loss values (below 0.001) for all of the training steps above 0.1T.

0.0 0.5 1.0

t/T

3.5

4.0

4.5

cu
m
su
m

(L
t)

(a) NLL Cumsum

0.0 0.5 1.0

t/T

0.5

1.0

cu
m
su
m

(L
t)

DDGM

DAED

(b) NLL Cumsum without t1

Figure 5.9.8. The cumulative sum of the negative log likelihood for different steps of a
standard DDGM trained on CIFAR10 with the VLB objective (left), and the same cumula-
tive sum without the first diffusion step in comparison to DAED with exactly the same β

scheduler.

we present how this loss contribution changes over time. Surprisingly, only 2% of
the training time is needed to align latter 90% of training steps to the loss value
below 0.01. These observations led to the emergence of cosine scheduler (Nichol and
Dhariwal, 2021) where authors change the noise scheduler to increase the number
of steps with higher loss values.

In this work, we propose to tackle this problem from a different perspective and
to analyze what happens if we detach the loss from initial diffusion steps from the
total sum. In Figure 5.9.8b, we compare how such a detachment of the first step
of 1000-stepped DDGM with DAED influence the loss value on the remaining 999
steps. As depicted in DAED, the loss converges to lower values that explains the
improvement of the performance of DAED when training with the VLB loss.

5.9.5. Training Hyperparameters

In all of our experiments, we follow Nichol and Dhariwal (2021). We train all
models with U-Net architecture, with three or four depth levels (depending on a

80

Table 5.9.4. DDGM and DAED hyperparameters for different datasets

Dataset train-steps depth channels
FashionMNIST 100k 3 64, 128, 128
CIFAR10 500k 3 128, 256, 256, 256
CelebA 200k 4 128, 256, 384, 512

dataset), with three residual blocks each, with a given number of filters depending
on the dataset – as presented in 5.9.4. In all of our models, we use time embeddings
and attention-based layers with three attention heads in each model.

We optimize our models on the basis of randomly selected diffusion steps. For
the standard DDGM, for simplicity, we use a uniform sampler, while for DAED,
we propose a weighted uniform sampler, where the probability of sampling from
a given step t is proportional to the given βt. This also applies to the Denoising
Autoencoder as a part of DAED that is updated accordingly to the new sampler. We
update models parameters with AdamW (Loshchilov and Hutter, 2017) optimizer
for a given number of batches as presented in 5.9.4. To prevent our model from
overfitting, we use dropout (Hinton et al., 2012) with probability p = 0.3. Detailed
implementation choices, examples of training runs and models can be found in the
attached code repository.

5.9.6. Computational details

Diffusion-based deep generative models are known for being computationally
expensive. For our training, we used Nvidia Titan RTX GPUs for complex datasets
(CIFAR, CelebA, ImageNet) and Nvidia GeForce 1080Ti for FashionMNIST. Full
training of our model on FashionMNIST for 100k steps on a single GPU took ap-
proximately 35 hours. For CIFAR and CelebA we used parallel computation based
with four GPUs. Full training with this setup took approximately 48 hours. Those
estimates are valid for training of both DDGM and DAED.

5.9.7. A comparison between DAED and DDGMs with more parameters

The DAED model uses two separate UNet models for the generative and denois-
ing parts. As a result, it has twice as many parameters as a DDGM. In Table 5.9.5
we compare DAED with DDGMs that have a comparable number of parameters. We
double the size of the UNet model for vanilla DDGM in two setups. In the first one
we increase the number of convolution channels, while in the second one, we double
the number of residual blocks.

81

Table 5.9.5. A comparison of DAED with DDGMs of different sizes on the FashionMNIST
dataset.

Total Params Inference Time FID ↓ Prec ↑ Rec ↑(mln.) (sec. per sample)
DDGM 8.8 0.65 7.8 72 65
DDGM 1.5× channels 19.8 0.84 8 74 65
DDGM 2× blocks 15.1 1.19 7.5 66 66
DAED 17.6 0.66 5.7 69 64

The results in Table 5.9.5 suggest that the performance of DAED over DDGMs
cannot be attributed purely to the larger number of parameters. As we increase the
number of layers of the UNet used by the DDGM, we see only a slight improvement
of the performance. Furthermore, a larger UNet leads to a significant increase in
the inference time compared to the smaller DDGM and DAED.

82

6. Learning Data Representations with

Joint Diffusion Models

Title Learning Data Representations with Joint Diffusion Models

Authors Kamil Deja, Tomasz Trzciński, Jakub M. Tomczak

Conference accepted for: European Conference on Machine Learning

Year 2023

Preface

In the previous chapter, we analysed how the behaviour of Diffusion-Based Deep
Generative models changes with diffusion timesteps. We showed that the denoising
decoder first learns meaningful data representations and generates new data fea-
tures from random noise, while the latest steps are used to remove the remaining
noise artefacts in a purely deterministic way. In the following work, we further
analyse this process and look at the data representations in the DDGMs from a
different perspective – as the internal activations within the denoising decoder. We
first focus on their structure, analysing how the encoded latent features change over
time, and then we show how we can use the same features outside of the generative
task.

To that end, we first postulate that in a UNet model, most commonly used as
a decoder of a DDGM, we can identify the latent data representations encoded by
the first part of the model known as Encoder. Such an approach resembles the
way how a generative autoencoder creates latent representations. Following this
observation, in the first analysis, we show that latent representations encode mean-
ingful data features. For example, they can be successfully used for classification
even when a denoiser is trained without supervision. Then, we analyse how those
representations change with time. Similarly to the previous work, we observe a
non-stationary behaviour of the decoder. In particular, it encodes low-grain data
features in the early steps of the backward diffusion process, while high-frequency
details are represented later. Therefore, we show that not only do diffusion mod-
els learn meaningful data representations, but they also disentangle them in the
process.

On top of our analysis, we introduce a joint diffusion model where we propose
to use the extracted representations as an input for a classifier and optimise the
whole network jointly. This way, we use one parameterisation to model both the
probability of an example p(x) and a marginal probability of its class assignment
p(y|x). We present several use cases where we can benefit from this formulation and
use the shared data representations in practical scenarios such as semi-supervised
learning, unsupervised domain adaptation or counterfactual examples generation.

85

Abstract

We introduce a joint diffusion model that simultaneously learns meaningful in-
ternal representations fit for both generative and predictive tasks. Joint machine
learning models that allow synthesising and classifying data often offer uneven per-
formance between those tasks or are unstable to train. In this work, we depart from
a set of empirical observations that indicate the usefulness of internal representa-
tions built by contemporary deep diffusion-based generative models in both genera-
tive and predictive settings. We then introduce an extension of the vanilla diffusion
model with a classifier that allows for stable joint training with shared parameteri-
sation between those objectives. The resulting joint diffusion model offers superior
performance across various tasks, including generative modelling, semi-supervised
classification, and domain adaptation.

6.1. Introduction

Training a single machine learning model that can jointly synthesise new data
as well as to make predictions about input samples remains a long-standing goal
of machine learning (Jebara, 2012; Lasserre et al., 2006). Shared representations
created with a combination of those two objectives promise benefits on many down-
stream problems such as calibration of model uncertainty (Chapelle et al., 2009),
semi-supervised learning (Kingma et al., 2014), unsupervised domain adaptation (Ilse
et al., 2020) or continual learning (Masarczyk et al., 2021).

Therefore, since the introduction of deep generative models such as Variational
Autoencoders (VAEs) (Kingma and Welling, 2014), a growing body of work takes ad-
vantage of shared deep neural network-based parameterisation and latent variables
to build joint models. For instance, (Ilse et al., 2020; Tulyakov et al., 2017; Knop
et al., 2020; Yang et al., 2022a) stack a classifier on top of latent variables sampled
from a shared encoder. Similarly, Nalisnick et al. (2019b) and Perugachi-Diaz et al.
(2021) use normalising flows to obtain an invertible representation that is further
fed to a classifier. However, these approaches require modifying the log-likelihood
function by scaling either the conditional log-likelihood or the marginal log-
-likelihood. This idea, known as hybrid modelling (Lasserre et al., 2006), leads to
the situation where models concentrate either on synthesising data or predicting
but not on both of those tasks simultaneously.

We address existing joint models’ limitations and leverage the recently intro-
duced diffusion-based deep generative models (DDGM) (Sohl-Dickstein et al., 2015;
Dhariwal and Nichol, 2021; Kingma et al., 2021). This new family of methods has

86

become popular because of the unprecedented quality of the samples they generate.
However, relatively little attention was paid to their inner workings, especially to
the internal representations built by the DDGMs. In this work, we fill this gap and
empirically analyse those representations, validating their usefulness for predictive
tasks and beyond. Then, we introduce a joint diffusion model, where a classifier
shares the parameterisation with the UNet encoder by operating on the extracted
latent features. This results in meaningful data representations shared across dis-
criminative and generative objectives.

We validate our approach in several use cases where we show how one part of
our model can benefit from the other. First, we investigate how DDGMs benefit
from the additional classifier to conditionally generate new samples or alter original
images. Next, we show the performance improvement our method brings in the
classification task. Finally, we extend the evaluation of our joint diffusion model
to semi-supervised learning, domain adaptation, and counterfactual explanations.
For all of those tasks, our method does not require any problem-specific adjustments,
which confirms the flexibility of our approach.

We can summarise the contributions of our work as follows:
• We provide empirical observations with insight into representations built in-

ternally by diffusion models, on top of which we introduce a joint classifier and
diffusion model with shared parameterisation.

• We introduce a conditional sampling algorithm where we optimise internal
diffusion representations with a classifier.

• We prove that our solution work with several use cases including the semi-
-supervised learning, domain adaption and counterfactual explanations.

𝐱𝐓 𝐱𝐭 𝐱𝐭−𝟏 𝐱𝟎

𝒃𝒊𝒓𝒅?

Figure 6.1.1. The overview of our method. We propose to jointly train the diffusion model
and the classifier using a single parameterisation with a shared UNet architecture.

87

6.2. Background

Joint models Let us consider two random variables: x ∈X and y ∈Y. For instance,
in the classification problem we can have X = RD and Y = {0,1, . . . ,K −1}. The joint
distribution over these random variables could be factorised in one of the following
two manners:

p(x, y)= p(x|y)p(y) (6.1)
= p(y|x) p(x). (6.2)

In Eq. (6.2), we get the conditional distribution p(y|x) (e.g., a classifier) and the
marginal distribution p(x). For prediction, it is enough to learn the conditional dis-
tribution, which is typically parameterised with neural networks. However, train-
ing the joint model with shared parameterisation has many advantages since one
part of the model can positively influence the other.

6.3. Related Work

Diffusion models There are several extensions to the baseline DDGM setup
that aim to improve the quality of sampled generations (Ho et al., 2020; Huang
et al., 2021; Kingma et al., 2021; Song and Ermon, 2019; Song et al., 2020b). With
extensions to the classifier and classifier-free guidance as described in Chapter 3.2.
Among those works, Dhariwal and Nichol (2021) introduce a classifier-guided gen-
eration, where a gradient from an externally and independently trained classifier is
added in the process of backward diffusion to guide the generation towards a target
class. On top of this approach, Augustin et al. (2022) present a tool for investigating
the decision of a classifier by generating visual counterfactual explanations with a
diffusion mode. In this work, we simplify both of those methods benefiting from
training a joint model with representations shared between a diffusion model and
a classifier.

Diffusion models and UNet representations Some works tackle the prob-
lem of data representation with diffusion models. We describe them closely in
Chapter 3.2, while in this work, we show that indeed diffusion models learn useful
representations. We further take advantage of that in utilising a shared parame-
terisation between a diffusion model and a classifier in a joint model.

Joint training Apart from latent variable joint models, Grathwohl et al. (2019b)
show that it is possible to use a shared parameterisation (a neural network-based
classifier) to formulate an energy-based model. This Joint Energy-based Model

88

(JEM) could be seen as a classifier if a softmax function is applied to logits or a
generator if a Markov-chain Monte Carlo method is used to sample from the model.
Although it obtains strong empirical results, gradient estimators used to train JEM
are unstable and prone to diverging when optimisation parameters are not perfectly
tuned, which limits the robustness and applicability of this method. Alternatively,
Introspective Neural Networks could be used for generative modelling and classifi-
cation by applying a single parameterisation (Jin et al., 2017; Lazarow et al., 2017;
Lee et al., 2018). The idea behind this class of models relies on utilising a training
procedure that combines adversarial learning and contrastive learning. Similarly
to JEMs, sampling is carried out by running an MCMC method. Grathwohl et al.
(2021) improve the performance of JEM by introducing a variational-based approx-
imator (VERA) instead of MCMC. Similarly, Yang and Ji (2021) introduce JEM++,
an improvement over the JEM’s generative performance by applying a proximal
SGLD-based generation, and classification accuracy with informative initialisation.
From a conceptually different perspective, Yang et al. (2022b) propose an implemen-
tation of a joint model based on the Vision Transformer (Dosovitskiy et al., 2020) ar-
chitecture, that yields state-of-the-art result in terms of image classification. Here,
we propose to combine standard diffusion models with classifiers by sharing their
parameterisation. Thus, our training is entirely based on the log-likelihood function
and end-to-end, while sampling is carried out by backward diffusion instead of any
MCMC algorithm.

6.4. Diffusion Models Learn Data Representations

As mentioned earlier, learning useful data representations is important for hav-
ing a good generator or classifier. Ideally, we would like to train a joint model that
allows us to obtain proper representations for both p(y|x) and p(x) simultaneously.
In this work, we investigate parameterisations of DDGMs and, in particular, the
use of an autoencoder as a denoising decoder pθ(xt−1|xt). Within this architecture,
the denoising function can be decomposed into two parts: encoding of the image at
the current timestep into a set of features Zt = e(xt) and then decoding it to obtain
xt−1 = d(Zt). In particular, for the UNet architecture, a set of features obtained from
an input is a structure composed of several tensors with image features encoded to
different levels, Zt = {z1

t ,z2
t . . .zn

t }. For simplification, for all further experiments, we
propose to pool features encoded by the same filter and concatenate the averaged
representations into a single vector zt, as presented in Fig. 6.4.1 for n = 3. In partic-
ular, we can use average pooling to select average convolutional filter activations to
the whole input. Details of this procedure are described in Appendix 6.8.1.

89

6.4.1. UNet representations are useful for prediction

𝐱𝐭−𝟏𝐱𝐭

Encoder Decoder

𝐳𝐭
𝟏

𝐳𝐭
𝟐

𝐳𝐭
𝟑

𝐳𝐭
Pooling

Figure 6.4.1. Data representation zt in a UNet-based
diffusion model.

First, we would like to
verify whether averaged rep-
resentations z0 extracted from
an original image x0 by
the UNet contain informa-
tion that is in some sense
predictive. For that, we
measure the performance of
an MLP-based classifier fed
with z0.

As presented in Fig 6.4.2a, representations encoded in z0 are indeed very infor-
mative and, in some cases (e.g., CIFAR-10), could lead to performance comparable
to a stand-alone classifier with the same architecture as the combination of the
UNet encoder and MLP but trained with the standard cross-entropy loss function.
This observation is in line with Baranchuk et al. (2021), where the same activations
from the pre-trained diffusion model were used for semantic image segmentation.

(a)

2004006008001000

Timestep

0.5

0.6

0.7

0.8

0.9

A
U

C

Blond hair

Black hair

Necklace

Mouth slightly open

Pointy nose

Eyeglasses

(b)

Figure 6.4.2. (a) The test-set accuracy of a stand-alone classifier compared to a classifier
trained on top of data representations from a pre-trained diffusion model extracted from
original images x0. (b) The area under the ROC curve (AUC) for logistic regression models
fit on data representations extracted with a pre-trained diffusion model at ten different
diffusion timesteps. High-grained features are already distinguishable at late diffusion
steps (closer to random noise), while low-grained features are only represented at the earlier
stage of the forward diffusion.

6.4.2. Diffusion models learn features of increasing granularity

The next question is how the data representations zt differ with diffusion timesteps
t. To investigate this issue, we train an unsupervised DDGM on the CelebA dataset,
which we then use to extract the features zt at different timesteps. On top of those
representations, we fit a binary logistic regression classifier for each of the 40 at-
tributes in the dataset. In Fig. 6.4.2b, we show the performance of those regression

90

models for 6 different attributes when calculated on top of representations from
ten different diffusion timesteps. We observe that the model learns different data
features depending on the amount of noise added to the original data sample. As
presented in Fig. 6.4.2b, high-grained data features such as hair colour start to
emerge at late diffusion steps (closer to the noise), while low-grained features (e.g.,
necklace or glasses) are not present until the early steps. This observation is in line
with the works on denoising autoencoders where authors observe similar behaviour
for denoising with different amounts of added noise Chandra and Sharma (2014);
Geras and Sutton (2014); Zhang and Zhang (2018).

6.5. Method

Taking into account the observations described in Section 6.4, we propose to
train a joint model that is composed of a classifier and a DDGM. Specifically, we
propose to use a shared parameterisation, namely, a shared encoder of the UNet
architecture that serves as the generative part and for calculating pooled features
for the classifier.

6.5.1. Joint Diffusion Models: DDGMs with classifiers

Following the procedure introduced in Sec. 6.4, we pool the latent representa-
tions of the data from different levels of the UNet architecture into one vector z. On
top of this vector, we build a classifier model trained to assign a label to the data
example represented by the vector z.

In particular, we consider the following parameterisation of a denoising diffusion
model within a single diffusion timestep t, pθ(zt−1|zt). We distinguish the encoder
eν with parameters ν that maps input xt into a set of vectors Zt = eν(xt), where
Zt = {z1

t ,z2
t . . .zn

t }, i.e., a set of representation vectors derived from each depth level of
the UNet architecture. The second component of the denoising diffusion model is
the decoder dψ with parameters ψ that reconstructs feature vectors into a denoised
sample, xt−1 = dψ(Zt). Together the encoder and the decoder form the denoising
model pθ with parameters θ = {ν,ψ}. Next, we introduce a third part of our model,
which is the classifier gω with parameters ω that predicts target class ŷ = gω(Zt).
The first layer of the classifier is the average pooling that results in a single repre-
sentation zt.

In our approach, we consider a classifier that takes the original image x0 for
which a vector of probabilities is returned φ and eventually the final prediction is cal-
culated, ŷ = gω(x0). The visualisation of our shared parameterisation is presented

91

ො𝐲

𝐱𝟎𝐱𝐓 𝐱𝐭−𝟏𝐱𝐭

ො𝐲𝐓 ො𝐲𝐭 ො𝐲𝐭−𝟏

𝐱𝟎𝐱𝐓 𝐱𝐭−𝟏𝐱𝐭

(a) The parameterisation of our joint diffusion (b) Additional noisy classifiers
Figure 6.5.1. The parameterisation of our joint diffusion model. (a) Each step in the back-
ward diffusion is parameterised by a shared UNet. The classifier uses the encoder of the
UNet together with the average pooling (green) and additional layers (yellow). (b) An alter-
native training that additionally uses the classifier for noisy images xt (t > 0).

in Figure 6.5.1(a). As a result, our model could be written as follows pν,ψ,ω(x0:T , y)=
pν,ω(y|x0) pν,ψ(x0:T), and applying the logarithm yields:

ln pν,ψ,ω(x0:T , y)= ln pν,ω(y|x0)+ ln pν,ψ(x0:T). (6.3)

The logarithm of the joint distribution (6.3) could serve as the training objective in
which ln pθ(x0:T) could be either approximated by the ELBO for the diffusion-based
model in (2.9) or the simplified objective with (2.13)). In this paper, we follow the
simplified objective:

L t,diff(ν,ψ)= Ex0,ϵ
[‖ϵ− ϵ̂‖2] , (6.4)

where ϵ̂ is a prediction from the decoder:

{z1
t ,z2

t . . .zn
t }=eν

(√
αtx0 +

√
1−αtϵ, t

)
(6.5)

ϵ̂=dψ({z1
t ,z2

t . . .zn
t }). (6.6)

For the classifier, we use the logarithm of the categorical distribution, i.e., the
crossentropy loss:

Lclass(ν,ω)=−Ex0,y

[
K−1∑
k=0

1[y= k] log
exp

(
φk

)∑K−1
c=0 exp

(
φc

)] , (6.7)

where y is a target class, φ is a vector of probabilities returned by the classifier
gω(eν(x0)), and 1[y = k] is the indicator function that is 1 if y equals k, and 0 other-
wise.

The final loss function in our approach is then the following:

L(ν,ψ,ω)= Lclass(ν,ω)+ (6.8)

−L0(ν,ψ)−
T∑

t=2
L t,diff(ν,ψ)−LT(ν,ψ).

92

We optimize the objective in (6.8) jointly with a single optimizer over parameters
{ν,ψ,ω}.

6.5.2. An alternative training of joint diffusion models

The training of the proposed approach over a batch of data is straightforward.
For a sampled pair (x0, y), the example x0 is first noised with a forward diffusion
to a random timestep, xt so that the training loss for the denoising model is a
Monte-Carlo approximation of the sum over all timesteps. Then x0 is fed to a clas-
sifier that returns probabilities φ, and the cross-entropy loss is calculated for given
y.

However, as discussed in Section 6.4.2, the diffusion model trained even in a
fully unsupervised manner provides data representations related to the different
granularity of input features at various diffusion timesteps. Considering this, we
can improve the robustness of our method by applying the same classifier to inter-
mediate noisy images xt (0 < t < T), which by reason adds the cross-entropy losses
for xt, namely:

Lt
class(ν,ω)=−Ex0,y

[
K−1∑
k=0

1[y= k] log
exp

(
φt

k

)∑K−1
c=0 exp

(
φt

c
)] , (6.9)

where φt
k is a vector of probabilities given by gω(eν(xt)). Then the extended objective

(6.8) is the following:

LT(ν,ψ,ω)= L(ν,ψ,ω)+ ∑
t∈T

Lt
class(ν,ω), (6.10)

where T ⊆ {1,2, . . . ,T} is the set of timesteps. These additional noisy classifiers are
schematically depicted in Figure 6.5.1(b) in which we highlight that the model is
reused across various noisy images. It is important to mention that the noisy clas-
sifiers serve only for training purposes; they are not used for prediction. This proce-
dure is similar to the data augmentation technique, where random noise is added
to the input Sietsma and Dow (1991).

6.5.3. Conditional sampling in joint diffusion models

To improve the quality of samples generated by DDGM, Dhariwal and Nichol
(2021) propose a classifier guidance approach, where an externally trained classifier
can be used to guide the generation of the DDGM trained in an unsupervised way
towards the desired class. In the standard DDGM, at each backward diffusion step,

93

an image is sampled from the output of the diffusion model pθ according to the
following formula:

µ,Σ←µθ (xt) ,Σθ (xt)

xt−1 ← sample from N
(
µ,Σ

) (6.11)

Dhariwal and Nichol (2021) proposed to change the second line of this equation and
add a scaled gradient with respect to the target class from an externally trained
classifier c(·) directly to the output of the denoising model:

xt−1 ← sample from N
(
µ+ sΣ∇xt c(xt),Σ

)
, (6.12)

where s is a gradient scale.
With the joint training of a classifier and diffusion model introduced in this work,

we propose to simplify the classifier guidance technique. Using the alternative train-
ing introduced in the previous section, Section 6.5.2, we can use noisy classifiers to
formulate conditional sampling. The encoder model eν encodes input data xt into
the representation vectors Zt that are used to both denoise an example into the
previous diffusion timestep xt−1 ∼ dψ (Zt) as well as to predict the target label with
a classifier ŷ = gω (Zt). Therefore, to guide the model towards a target label during
sampling, we propose optimising the representations Zt according to the gradient
calculated through the classifier with respect to the desired class. The overview of
this procedure is presented in the Algorithm 1.

Algorithm 1 Sampling with optimised representations
given a diffusion model (an encoder eν(Zt|xt), a decoder
dϕ(xt−1|Zt)), a classifier gω(y|Zt), and a step size α.

Input: class label y, step size α

xT ← sample from N(0,I)
for all t from T to 1 do

Zt ← eν(xt)
Z′

t ←Zt −α∇Zt log gω(y|Zt)
µ,Σ← dψ(Z′

t)
xt−1 ← sample from N(µ,Σ)

end for
return x0

For the reformulation of the diffusion model proposed by Ho et al. (2020) where
instead of predicting the previous timestep xt−1 denoising model is optimised to
predict noise ϵ that is subtracted from the image at the current timestep xt, we ade-
quately change the optimisation objective. Instead of optimising the noise to be spe-

94

cific to the target class, we optimise it to be anything except for the target class, which
we implement by changing the optimisation direction: Z′

t ←Zt +α∇Zt log gω(y|Zt).

6.6. Experiments

In the experiments, we aim for observing the benefits of the proposed joint diffu-
sion model over a stand-alone classifier or a marginal diffusion model. To that end,
we run a series of experiments to verify various properties, namely:

• We measure the quality of a classifier to evaluate whether training together
with a diffusion model improves the robustness of the classifier.

• We measure the generative capability of our model to check if representations
optimised by the classifier can lead to more accurate conditional generations.

• We train our model in a semi-supervised setup to see if shared representations
between the classifier and the diffusion model can positively influence the clas-
sification accuracy for a limited number of labelled data.

• We use a domain-adaptation task to check if optimising the representations
using our approach helps to adapt to new data compared to a stand-alone clas-
sifier.

• We show that our joint model learns abstract features that can be used for the
counterfactual explanation.

We use a UNet-based model with a depth level of three in all experiments. We
pool its latent features with average pooling into a single vector, on top of which we
add a classifier with two linear layers and the LeakyReLU activation. All metrics
are reported for the standard training with the objective in (6.8), except for the con-
ditional sampling where we additionally train the classifier on noisy samples, i.e.,
additional losses as in (6.10). Hyperparameters and training details are included
in the appendix and code repository1.

6.6.1. Predictive performance of joint diffusion models

In the first experiment, we evaluate the predictive performance of our method.
To that end, we report the accuracy of our model on four datasets: FashionMNIST,
SVHN, CIFAR-10, and CIFAR-100. We compare our method with a baseline clas-
sifier trained with a standard cross-entropy loss and the MLP classifier trained on
top of representations extracted from the pre-trained DDGM as in Section 6.4, and
three joint (hybrid) models: VERA (Grathwohl et al., 2021), JEM++ (Yang and Ji,

1 https://github.com/KamilDeja/joint_diffusion

95

https://github.com/KamilDeja/joint_diffusion

2021), HybViT (Yang et al., 2022b). The results of this experiment are presented in
Table 6.6.1.

As noticed before, a classifier trained on features extracted from the UNet of a
DDGM pre-trained in an unsupervised manner achieves reasonable performance.
However, it is always outperformed by a stand-alone classifier. Interestingly, the
proposed joint diffusion model achieves the best performance on all four datasets.
The reason for that could be two-fold. First, training a partially shared neural net-
work (i.e., the encoder in the UNet architecture) benefits from the unsupervised
training, similarly to how the pre-training using Boltzmann machines benefited
finetuning of deep neural networks Hinton et al. (2006). Second, the shared en-
coder part is more robust since it is used in the backward diffusion for images with
various levels of noise.

Table 6.6.1. The classification accuracy calculated on the test sets. For each training of
our methods and the vanilla classifier, we used exactly the same architectures. We report
original reported results from related methods.

Model F-MNIST SVHN CIFAR-10 CIFAR-100

VERA (Grathwohl et al., 2021) - 96.8% 93.2% 72.2%
JEM++ (Yang and Ji, 2021) - 96.9% 94.1% 74.5%
HybViT (Yang et al., 2022b) - - 95.9% 77.4%
Classifier 94.7% 96.9% 94.0% 72.3%
Ours (pre-trained DDGM) 60.6% 79.6% 80.9% 45.9%
Ours 95.3% 97.4% 96.4% 77.6%

6.6.2. Generative performance of joint diffusion models

In the second experiment, we check how adding a classifier in our joint diffusion
models influences the generative performance. We use the FID score to quantify
the quality of data synthesis. Additionally, we use distributed Precision (Prec), and
Recall (Rec) for assessing the exactness and diversity of generated samples Sajjadi
et al. (2018). For our joint diffusion model, we consider samples from the prior let
through the backward diffusion. We also use the second sampling scheme in which
we use conditional sampling, namely, the optimisation procedure as described in
Section 6.5.3. We compare our approach with a vanilla DDGM, and a DDGM with
classifier guidance Dhariwal and Nichol (2021), and recent state-of-the-art joint
(hybrid) models: VERA Grathwohl et al. (2021), JEM++ Yang and Ji (2021), HybViT
and GenViT Yang et al. (2022b).

96

Table 6.6.2. An evaluation of generative capabilities by measuring the FID score, Precision
and Recall of generations from various diffusion-based models, including our joint diffusion
model.

Model FashionMNIST CIFAR-10 CIFAR-100 CelebA
FID ↓ Prec ↑ Rec ↑ FID ↓ Prec ↑ Rec ↑ FID ↓ Prec ↑ Rec ↑ FID ↓ Prec ↑ Rec ↑

DDGM 7.8 71.5 65.3 7.2 64.8 61.2 29.7 70.0 47.8 5.6 66.5 58.7
DDGM (classifier guidance) 7.9 66.6 59.5 8.1 63.2 63.3 22.1 69.3 46.9 4.9 66.0 57.8

Ours 8.7 71.1 61.1 7.9 69.9 56.4 17.4 63.2 54 7.0 67.5 51.5
Ours (conditional sampling) 5.9 63.1 63.2 6.4 70.7 54.3 16.8 63.5 54.1 4.8 66.3 56.5

Overall, our proposition outperforms standard DDGMs regarding the general
FID, see Table 6.6.2. However, in some cases, the vanilla DDGM and the DDGM
with the classifier guidance obtain better results in terms of the particular compo-
nents: Precision (FashionMNIST, CIFAR-100) or Recall (FashionMNIST, CelebA).
We can observe that conditional sampling improves the quality of generations in all
evaluated benchmarks, especially in terms of precision that can be understood as
the exactness of generations. This could result from the fact that the optimization
procedure drives Zt to a mode. Eventually, the backward diffusion generates better
samples. However, comparing our approach to current state-of-the-art joint models,
we clearly outperform them all, see Table 6.6.3.

Table 6.6.3. A comparison of generative capabilities of joint models by measuring the FID
score.We report original reported results from related methods.

Model CIFAR-10 CIFAR-100 CelebA
FID ↓ FID ↓ FID ↓

VERA (Grathwohl et al., 2021) 27.5 - -
JEM++ (Yang and Ji, 2021) 37.1 - -
HybViT (Yang et al., 2022b) 26.4 33.6 -
GenViT (Yang et al., 2022b) 20.2 26.0 22.07

Ours 7.9 17.4 7.0
Ours (conditional sampling) 6.4 16.8 4.8

To get further insight into the role of conditional sampling, we carried out an
additional study for the varying value of α (the step size in Algorithm 1). In Fig-
ure 6.6.1, we present how Precision and Recall change for different values of this
parameter. Apparently, increasing the step size value α leads to more precise but
less diverse samples. This is rather intuitive behaviour because larger steps result
in features Zt closer to modes. There seems to be a sweet spot around α ∈ [100,250]

for which both measures are high.

97

0 500 1000
Step size α

40

60

P
re

ci
si

on

CIFAR10

FashionMNIST

0 500 1000
Step size α

40

50

60

70

R
ec

al
l

CIFAR10

FashionMNIST

Precision Recall
Figure 6.6.1. The dependency between the value of the step size α and the value of Preci-
sion and Recall for the joint diffusion with conditional sampling.

We visualise this effect in Figure 6.6.2. For a chosen class, e.g., plane, we observe
that the larger α, the more precise the samples are but with limited diversity (i.e.,
the background is almost the same). For more samples, see Appendix 6.8.3.

In Fig. 6.6.3 we present how the decision of the classifier changes for sampling
with the optimised generations. With a higher α step size value, optimisation con-
verges faster towards target classes. Interestingly, for the CIFAR10 dataset, there
are certain classes (e.g., class 3) that converge later in the backward diffusion pro-
cess than the others. We also present associated samples from our model. Once
more, they depict that higher values of the α parameter lead to more precise but
less diverse samples. We show more generations from our joint model in the Ap-
pendix 6.8.3.

𝛼 = 0

𝛼 = 100

𝛼 = 500

𝛼 = 1000

Figure 6.6.2. Samples from our joint diffusion model optimised towards a specific class
(here: plane) with different step size α.

6.6.3. A comparison to state-of-the-art approaches

To get a better overview of the performance of our joint diffusion model, we
present a comparison with other joint models and SOTA discriminative and gener-

98

02004006008001000
Timestep

0

2

4

6

8
Av

g.
 p

re
di

ct
io

n
9
7
6
4
3
1
0

02004006008001000
Timestep

0

2

4

6

8

Av
g.

 p
re

di
ct

io
n

9
7
6
4
3
1
0

(a) α= 200 (b) α= 1000

Figure 6.6.3. CIFAR10: Classifier decisions at different diffusion steps, for conditional
sampling with different values of step size α and associated conditional samples

ative models in Table 6.6.4. Importantly, we present the discriminative model and
the generative model as the bounds of the performance. The purely discriminative
and generative models are included as the upper bounds of the performance. Impor-
tantly, within the class of the joint models, our joint diffusion clearly outperforms
all of the related works.

Table 6.6.4. A comparison of our joint diffusion model with other joint models, and the
SOTA discriminative model, and the SOTA generative model on the CIFAR-10 test set.

Class Model Accuracy% ↑ FID↓

Joint

IGEBM (Du and Mordatch, 2019) 49.1 37.9
Glow (Kingma and Dhariwal, 2018) 67.6 48.9
Residual Flows (Chen et al., 2019) 70.3 46.4

JEAT (Grathwohl et al., 2019a) 85.2 38.2
JEM (Grathwohl et al., 2019a) 92.9 38.4

VERA (α= 100) (Grathwohl et al., 2021) 93.2 30.5
JEM++ (Yang and Ji, 2021) 94.1 38.0
HybViT (Yang et al., 2022b) 95.9 26.4

Ours 96.4 7.9
Disc. VIT-H (Dosovitskiy et al., 2020) 99.5 -

Gen. DDGM (our implementation) - 7.2
LSGM (Vahdat et al., 2021) - 2.1

6.6.4. Semi-supervised learning of joint diffusion models

With satisfactory performance, we further evaluate other setups where one part
of the model can benefit from another. In particular, we propose to assess our ap-
proach in the semi-supervised setup, where we artificially limit the amount of la-
belled data to 10%, 5% or 1% in three datasets SVHN, CIFAR-10, and CIFAR-100.
We compare joint diffusion models to a deep neural network-based classifier and a

99

deep neural network-based classifier on top of the pre-trained UNet encoder. The
results are presented in Table 6.6.5.

In the case of the stand-alone classifier, we observe that classification accuracy
drastically drops with the number of labelled data. However, in our joint diffusion
model, we can train the classifier on the smaller dataset while still optimising the
generator part in an unsupervised manner, with all available unlabelled data. This
approach significantly improves the classifier’s performance thanks to the improved
quality of data representations. For CIFAR-10, we observe that the joint diffusion
model with only 5% of labelled data (250 examples per class) performs almost as
well as the stand-alone classifier trained with the fully labelled training dataset. In
more extreme scenarios, e.g., labelled data limited to 50, 25, or 5 examples per class,
it seems to be slightly more beneficial to first learn the data representation in an
unsupervised way and then add the classifier on top of them. However, overall, the
joint diffusion model performs extremely well and greatly benefits from available
unlabelled data in terms of classification accuracy. Our experiments align with the
observation by Baranchuk et al. (2021), where DDGMs were used to improve the
performance in semi-supervised image segmentation.

Table 6.6.5. The accuracy of the classifier trained in the semi-supervised setup, for each
dataset we train the classifier with the fully labelled data or a limited amount of labelled
examples and the remaining unlabelled examples. We compare standard classifier with
classifier trained on a pre-trained DDGM as presented in Sec 6.4 and our joint diffusion
method.

SVHN CIFAR-10 CIFAR-100
Labelled data 100% 5% 1% 100% 5% 1% 100% 10% 5% 1%
Images per class 10000 500 100 5000 250 50 500 50 25 5

Classifier 95.1 87.8 75.15 81 46.4 31.5 60.8 22.2 16.6 6.9
Ours (pre-trained DDGM) 79.6 51.7 66.0 80.9 75.1 65.3 43.8 33.9 28.8 15.4
Ours 95.4 90.2 76.7 89.9 78.2 64.7 63.6 38.6 21.5 11.5

6.6.5. Domain adaptation with diffusion-based fine-tuning

In the previous section, we evaluate whether the classifier can benefit from the
generative part of our model when trained with limited access to labelled data. Now,
we further extend those experiments and check if joint diffusion can adapt to the
new data domain using only the generative part – in a fully unsupervised way. For
this purpose, we run an experiment in which we first train the model on the source
labelled data to retrain it on the target dataset without access to the labels. We
compare our approach to a standalone deep neural network-based classifier, see
Table 6.6.6.

100

Table 6.6.6. The classification accuracy of the classifier trained in a domain adaption task.
We first train the joint model on the source dataset, which we adapt to the target domain
by retraining it using only the diffusion loss for the examples in the target one.

SVHN → MNIST USPS → MNIST MNIST → USPS
Classifier 78.8 54.7 72.2
Ours 85.5 90.5 92.7
Classifier on target
(upper bound) 96.1 96.8 99.4

As expected, in all three scenarios, the classification accuracy of the stand-alone
classifier degrades on a target domain.2 However, having access to unlabelled data
from the target domain allows our joint diffusion model to adapt surprisingly well.
Our approach outperforms the stand-alone classifier in all three cases by a signifi-
cant margin. This result indicates that learning low-level features is essential for
obtaining good predictive power while it is enough to transfer the classification head
unchanged.

Negative examples Positive examples
Figure 6.6.4. Data samples from the Malaria dataset classified as negative examples (left)
or parasitised cells (right). (top row) original data examples, (2nd row) data noised with 20%
of forward diffusion steps, (3rd row) denoised images with conditional sampling, (bottom
row) the difference between the 3rd and 4th rows.

6.6.6. Visual Counterfactual Explanations

In the last experiment, we apply our joint diffusion model to real-world medical
data, the MALARIA dataset Rajaraman et al. (2018), that includes 27,558 cell im-
ages that are either infected by the malaria parasite or not (a classification task).

2 The classification accuracy does not drop to a random level because all datasets share the same
task, i.e., digits classification.

101

The cells have various shapes and different staining (i.e., colours) and contain or
not the parasite (visually apparent as a purple dot).

After training our joint diffusion model, we obtain high classification accuracy
(98%) on the test set. On top of this, we introduce an adaptation of visual counter-
factual explanations (VCE) method Augustin et al. (2022) that provides an answer
to the question: What is the minimal change to the input image x0 to change the
decision of the classifier. In our setup, we answer this question with a conditional
sampling algorithm that we use to generate the counterfactual explanations. In
Figure 6.6.4, we show a few examples from the negative (left) or positive (right)
classes. We add 20% of noise to these images and run conditional sampling with
the opposite class (i.e., changing negative examples to positive ones and vice versa).
In both cases, the joint diffusion model with conditional sampling can either remove
the parasite from the image (for the positive examples) or add the parasite to the
image (for the negative ones). All presented images are not cherry-picked.

This experiment shows that not only we can use our proposed approach to obtain
a powerful classifier but also to visualise some regions of interest. In the considered
case, calculating the difference between the original example and the image with a
changed class label indicates the malaria plasmodium (see the last row in Figure
6.6.4). We provide more examples from the CelebA data in the Appendix 6.8.4.

6.7. Conclusion

In this work, we introduced a joint model that combines a diffusion model and a
classifier through shared parameterisation. We first experimentally demonstrated
that DDGMs learn semantically meaningful data representations that could be
used for classification. On top of this observation, we introduced our joint diffusion
models. In the experimental section, we showed that our approach improves the per-
formance in both the classification and generative tasks, providing high-quality gen-
erations and enabling conditional generations with built-in classifier guidance. Our
proposed approach achieves state-of-the-art performance in the class of joint models.
Additionally, we show that the joint diffusion model can be used in semi-supervised
learning, domain adaptation, and for counterfactual explanations, without any
changes to the original setup.

102

6.8. Appendix

6.8.1. Training details and hyperparameters

Pooling of the UNet features As discussed in Section 6.4, we pool the UNet fea-
tures encoded to different UNet levels with the average pooling function. Precisely
speaking, we take an average convolutional filter activation for a given filter across
the whole image. This approach seems to result in the loss of information, such as
the location of particular features extracted by the convolutional filter, but it allows
us to create image representation with reasonable dimensionality. Depending on
the dimensionality of input, with our method, we extract 1856 features for 28×28

Gray-scale images (e.g. MNIST), 3712 features for 32× 32 images with 3 colour
channels (e.g. CIFAR), and 5248 features for 64×64 images with 3 colour channels
(CelebA).

In all of our experiments, we use average pooling. Although other options such
as max or min pooling might be used, our approach ensures that all of the features
across the whole image are shared between the classifier and the generative models.

Semi-supervised learning In our semi-supervised learning, we train our joint
diffusion model on datasets with limited access to labelled samples. The simplest
approach for this problem is to calculate the loss function on the diffusion using the
whole batch of data while using only the labelled examples for the classifier loss.
However, in some scenarios, we artificially omit up to 99% of labelled data. In prac-
tice, this would lead to a situation where for batch size equal to 128 or 254 examples,
the classifier loss would be practically calculated on 1 or 2 samples. Therefore, to
stabilise the training we propose to create a buffer where we put labelled examples
from each batch. When the buffer reaches its capacity equal to the batch size, we
calculate the classifier loss using the examples from the buffer and add it to the
generative loss according to Equation 6.8.

6.8.2. Domain adaptation

In the experiments on the domain adaptation task, we propose the simplest
setup, where we first train the joint model on the source task using the joint loss
function (Eq. 6.8), and then we retrain the model on the target domain using only
the DDGM loss in Equation 6.4. We show that without any alteration to our basic
setup, we can observe a significant performance boost compared to the baseline
classifier. We believe that we can further improve those results if we focus directly
on the domain adaptation task and take advantage of the recent advantages in this

103

field. Further experiments in this direction should for example include simultane-
ous training on examples from two domains. To improve the alignment, we can also
benefit from adversarial training as introduced by Ganin et al. (2016) in DANN.

104

6.8.3. Additional results: Conditional generations with optimised

representations

In Fig. 6.8.1 and Fig. 6.8.2 we present additional generations from our joint-
-diffusion model sampled with and without conditional sampling technique. Our
method is capable of generating high quality samples that are precise and diverse.

Fashion MNIST CIFAR-100
Figure 6.8.1. Conditional samples from our joint diffusion model for Fashion MNIST
dataset (left) and first 10 classes of CIFAR100 dataset (right). Each row represents samples
from one class.

Fashion MNIST CIFAR-100 CelebA
Figure 6.8.2. Generated examples from our joint diffusion model without conditional sam-
pling for CIFAR-10, CIFAR-100, and CelebA dataset.

105

6.8.4. Additional results: Counterfactual image generation

In the experiment described in Section 6.6.6, we presented how we can use our
joint diffusion model to generate the counterfactual explanations to the classifier
using the medical dataset. In Figure 6.8.3, we present more examples of this ap-
proach by perturbing original examples from the CelebA dataset. We select 3 at-
tributes from the CelebA dataset namely: young, smiling, and moustache. For each
attribute, we select 5 positive examples and 5 negative examples which we alter us-
ing our conditional sampling procedure with the classifier-based optimisation. We
present original examples (first row) noised with 20% of noise (second row) and
generated towards counterfactual class (third row). In the last row, we show the
differences between the original and modified examples.

(a) Young to old (left), old to young (right)

(b) Smiling to no-smiling (left), no-smiling to smiling (right)

(c) Moustache to no-moustache (left), no-moustache to moustache (right)
Figure 6.8.3. Counterfactual image generation for the CelebA dataset using three different
attributes on random original examples. For each attribute, we select 5 positive examples
that we change to negative ones and 5 negative ones that we change to positive ones.

107

7. Background – Continual Learning

So far, we have considered generative models in the most common stationary
setup, where a model is trained only once, using available training data, and val-
idated with a stationary test set of similar data distribution. However, in many
real-world scenarios, the training data for machine learning systems come in sepa-
rate portions (known as tasks). For example, an autonomous driving system trained
over the data acquired in certain weather conditions (e.g. in summer) should be re-
trained when a new portion of data arrives (e.g. with snowy winter conditions). In
such a scenario, we would expect the model to learn from additional winter data
samples while maintaining its performance on sunny days. Unfortunately, recent
neural methods based on training with gradient-based optimisation suffer from the
problem known as catastrophic forgetting (French, 1999) – an abrupt loss in perfor-
mance on the previous portion of data while retrained on the new one. Therefore,
the most common practical solution for training a model on a data stream is to
retrain it from scratch every time a new portion of data arrives, using all the data
gathered so far. Such an approach brings several apparent drawbacks, as it requires
storing all the historical data samples and computationally expensive retraining
whenever a new portion of data is available. Continual Learning (CL) methods are
designed to overcome those shortcomings arising when training machine learning
models with a continuous stream of data.

In particular Hadsell et al. (2020) and Pascanu (2021) distinguish the five most
important desiderata for continual learning systems:

• Minimal access to previous tasks. Ideally, the CL system should be able
to work infinitely. Therefore it should not require growing storage capacity for
previous data samples.

• Minimal increase in model capacity and computation. The solution
should be scalable. We cannot simply add a new model with every task

• Minimising catastrophic forgetting. Training on a new task should not
result in a significant loss in performance on previously learned tasks.

• Maintaining plasticity. Preventing forgetting cannot be achieved at the ex-
pense of the performance on the new data. The model should be able to effec-
tively learn from new tasks.

• Maximising forward and backward transfer. Learning from one task
should facilitate learning from similar past and future tasks.

7.1. Continual Learning Methods

The problem of continual learning, also known as lifelong learning, attracts the
increasing attention of the research community (Parisi et al., 2019; Mundt et al.,
2020a; Qu et al., 2021; Mundt et al., 2023), which results in a growing number of
novel methods that try to fulfil the above-mentioned objectives with different ap-
proaches. Usually, CL methods are divided into three categories which we overview
in this section.

7.1.1. Methods based on regularisation

The regularisation-based CL approaches aim to strike a delicate balance be-
tween preserving previously acquired knowledge and providing sufficient flexibil-
ity to incorporate new information. The need for such a balance arises due to the
tension between two competing goals – maintaining stable performance on previ-
ously learned tasks and rapidly adapting to the new ones (i.e. accommodating new
knowledge) known as stability-plasticity dilemma (Hebb, 1949). Models trained
without continual learning methods have very high plasticity and no stability. They
can quickly adapt to new data distribution by completely ignoring previously en-
coded knowledge. Although we sometimes befit from this property (e.g. in transfer
learning), it is usually a significant drawback of recently used methods that for-
get previously encoded knowledge catastrophically. Therefore, to ensure stability,
regularisation-based CL methods apply some additional penalty that slows the pro-
cess of overwriting previously learned knowledge.

In Elastic Weights Consolidation (EWC) (Kirkpatrick et al., 2017a) propose find-
ing weights that are crucial for previous tasks using Fisher information to slow
down their updates. Similarly, in Synaptic Intelligence (SI) (Zenke et al., 2017a)
and Memory Aware Synapses (MAS) (Aljundi et al., 2018), additional information
is stored together with each neuron in order to assess their significance. Several
works employ Bayesian theory (Bayes, 1763) to estimate uncertainty and use it to
either regularise weights (Ahn et al., 2019) or to slow down their updates by ade-
quately adapting the learning rate (Ebrahimi et al., 2019). Simultaneously, a fam-
ily of regularisation approaches is inspired by the knowledge distillation technique
originally proposed by Hinton et al. (2015) for the compression of neural networks.
For example, in Learning Without Forgetting (LWF) (Li and Hoiem, 2017), the con-

109

tinually trained model is regularised by minimising the difference in predictions for
the samples from a novel task processed by a new model and its copy frozen at the
beginning of a new task. The extension of this method combined with separated
softmax is introduced by Ahn et al. (2021).

In general, regularisation-based CL approaches offer a promising avenue for
mitigating the problem of catastrophic forgetting in neural networks trained for
multiple tasks. They directly tackle the problem without relying on additional re-
sources. Nevertheless, the performance of this family of methods in complex and
diverse scenarios is limited.

7.1.2. Methods based on dynamic architectures

Hence, methods based on dynamic architectures build different model versions
for different tasks to improve its performance in a multitask setup. Usually, a single
neural model is split into a shared part used in every task and task-related sub-
modules. During inference, the sample is first assigned to the proper task (or their
combination) and then inferred through the specific part of a network. In Reinforced
Continual Learning (RCL) Xu and Zhu (2018), Dynamically Expandable Networks
(DEN) Yoon et al. (2018), and Progressive Neural Networks (PNN) Rusu et al. (2016)
new structural elements are added to the model for each new portion of data. Alter-
natively, in Masse et al. (2018); Mallya and Lazebnik (2018); Golkar et al. (2019);
Mallya et al. (2018), authors introduce methods for selecting different submodels of
the larger model that are used only for consecutive tasks. Some architecture-based
methods focus on specific components of the model. E.g. Yan et al. (2021) propose
to train a new task-specific feature extractor, while on the other hand, Zhang et al.
(2021) introduce continually evolved classifiers.

In general, methods in this category provide high accuracy in a task-incremental
scenario when test samples are presented together with a corresponding task in-
dex Van de Ven and Tolias (2019). Otherwise, the task index needs to be estimated.
Current approaches solve this issue using heuristics, such as the minimisation of
classification entropy Hendrycks and Gimpel (2017); Wortsman et al. (2020), or with
additional structures like gating autoencoders (Aljundi et al., 2017).

Apart from an explicit split in the model’s architecture, a branch of works im-
plicitly divides the capabilities of neural networks through orthogonalisation of the
directions in which different tasks are processed. In particular Zeng et al. (2019),
propose an Orthogonal Weights Modification (OWM) algorithm, where the modifi-
cations of weights in different tasks are mapped onto a selected subspace that does
not affect previous tasks. Similarly, Wang et al. (2021c) benefit from the fact that
models trained in a supervised manner rarely utilise the full network capabilities,

110

but in fact, every layer usually applies low-dimensional transformations. Therefore,
the authors introduce the Adam-NSCL algorithm, which maps the original gradient
values into the null spaces of the previous tasks.

7.1.3. Methods based on replaying

While methods gathered around the previous two groups focus on preventing the
forgetting of continually trained models, methods based on replaying are based on
the assumption that forgetting is inevitable and can only be overcome by a constant
rehearsal with previous data examples. Therefore, the techniques described in this
section preserve some form of previous data and use it alongside new samples when
retraining the model.

Classifier

New data

Previous

data

Buffer

Add to

the buffer

Figure 7.1.1. The schematic visualisation of rehearsal based continual learning system,
where images from past tasks are stored in the examples buffer and added to the new data
examples when retraining the model.

The first group of works falling into this category, including Rolnick et al. (2019);
Aljundi et al. (2019), employ a memory buffer to store randomly selected or possibly
most relevant previous data examples. We present the schematic overview of this
approach in Figure 7.1.1. On top of this basic schema, different techniques are used
to select relevant data samples that should be stored for further rehearsal. In partic-
ular, Isele and Cosgun (2018) introduce Selective Experience Replay (SER), where
exemplars are stored according to the carefully balanced trade-off between those
favouring surprise or reward. Alternatively, GEM/A-GEM (Lopez-Paz and Ranzato,
2017a; Chaudhry et al., 2019) combine the idea of rehearsal from examples with con-
straints on the update gradients. To further simplify the rehearsal Belouadah and
Popescu (2019) point out that storing task-related statistics can be beneficial for
rehearsal. Therefore they propose the Incremental Learning with Dual Memory

111

approach, which holds two different types of data related to previous tasks. Fi-
nally, Prabhu et al. (2020) introduce a simple approach called GDumb, highlighting
the limitations of recent CL methods. Authors surprisingly show that retraining a
model from scratch from a small memory buffer can form a solid benchmark that
outperforms several CL techniques.

Although storing data samples in a memory buffer allows accurate results, at
least several examples from each incoming task must be remembered. This require-
ment makes the solution inadequate for the general continual learning problem, in
which we would like to retrain the model in a potentially infinite number of tasks.

The most straightforward approach to overcome this burden was proposed al-
ready by Robins (1995), where so-called pseudo-rehearsal random samples were
used to prevent forgetting. This idea has changed significantly with the introduction
of Deep Generative Replay (Shin et al., 2017), where the buffer was replaced with
a generative model based on the Generative Adversarial Networks (GAN). However,
since any structure used to compress past data may also suffer from catastrophic
forgetting, the authors propose a self-rehearsal procedure to train the generative
model with data from new tasks and regenerated examples from the previous ones.
This approach is used in the majority of generative rehearsal-based CL methods.
We present the schematic overview of generative rehearsal in Figure 7.1.2.

Classifier

New data

Previous

data

Retrain with

new data

Generative model

Figure 7.1.2. The schematic visualisation of generative rehearsal based continual learning
system. An additional generative model is used that learns to generate past data samples
as rehearsal example that are added to the new data batch when retraining the model.

Similarly to Shin et al. (2017), van de Ven and Tolias (2018) introduces a gener-
ative rehearsal model based on Variational Autoencoder (VAE). Additionally, they
combine the generative model with the base classifier to reduce the cost of model
retraining. Similarly, Scardapane et al. (2020) combines classifier with a normal-
ising flow model, which they additionally regularise with respect to the past tasks,
while Rostami et al. (2019) employ Gaussian Mixture Model (GMM) as a source of

112

rehearsal examples. VAE was also used in favour of GANs by Mundt et al. (2020b),
who successfully incorporated this model into the problem of continual learning
with open datasets. More generally, Lesort et al. (2019) overview how different gen-
erative models behave in continual learning setup. Their analysis includes different
generative autoencoders and several versions of GANs. The general conclusion of
this work is that the highest performance in terms of image synthesis can be ob-
served with GANs. However, all the methods trained with the Generative Replay
strategy struggle with more complex datasets.

Therefore, apart from methods that aim to generate original input from the pre-
vious tasks, a branch of works focuses on rehearsing the internal data represen-
tations instead, as presented in Figure 7.1.3. This idea was introduced in Brain
Inspired Replay (BIR), where Van de Ven et al. (2020) propose to replay data latent
representations obtained from a first few layers of a classifier, commonly known as
feature extractor. For simple datasets, authors propose to train the feature extrac-
tor alongside the classifier, while for more complex ones, they pre-train and freeze
the first few convolutional layers. This depicts the main challenge in this group of
methods – they have to assume that the difference between tasks is not substantial
enough to spoil the replayed representations or the feature extractor has to be frozen
after pre-training.

New data

feature

extractor

(pre-trained)

Generative model

Classifier

Previous

data features

New data

features

Figure 7.1.3. The schematic visualisation of feature-replay based continual learning sys-
tem, where images from past tasks are stored in the memory buffer. When retraining the
basic model (e.g. classifier) rehearsal samples selected from the buffer are added to the new
data examples to prevent forgetting.

The idea of feature replay is further explored by Kemker and Kanan (2018),
where feature replay is divided into short and long-term parts. Contrary to previous
approaches based on VAE, Liu et al. (2020) explore feature replay with conditional
generative adversarial networks. While those techniques provide state-of-the-art
performance on complex datasets, they all utilise a frozen feature extractor, what
limits the usability of the method. To overcome this drawback, Thandiackal et al.
(2021) introduce Generative Feature-Driven Image Replay where authors combine
image and features replay, which allows them to continually train (in a limited
fashion) both the classifier and feature extractor.

113

7.2. Continual Learning of Generative Models

In all of the works described in the previous section, the generative model is
employed as a source of previous data rehearsal examples to train a base classifier.
However, it is known that any neural model can suffer from catastrophic forgetting.
In particular, generative models continually retrained with a new task of radically
different distribution, quickly adapt to the new one and completely forget how to
generate samples from the previous ones. Therefore, a growing field of research
focuses on continual learning of generative models beyond generative replay.

In particular Nguyen et al. (2018) adapt regularisation-based methods such as
Elastic Weight Consolidation (EWC) (Kirkpatrick et al., 2017a), and Synaptic In-
telligence (SI) (Zenke et al., 2017a) to the continual learning in generative models
regularising the adjustment of the most significant weights. The authors also in-
troduce Variational Continual Learning (VCL), a dynamic architecture that adds
task-specific modules to the variational autoencoder.

In VASE by Achille et al. (2018), authors propose a method for continual learn-
ing of shared disentangled data representation. While encoding images with a
standard VAE, VASE also seeks shared generative factors. A similar concept of
mixed-type latent space was introduced in LifelongVAE (Ramapuram et al., 2020),
where it is composed of discrete and continuous values.

In HyperCL, von Oswald et al. (2019) propose an entirely different approach
with a hypernetwork generating the weights of the continually trained model. This
yields state-of-the-art results in discriminative models task-incremental training
but also applies to the generative models. In particular, the authors introduce a
method for generating variational autoencoder’s weights. In order to differentiate
tasks, Rao et al. (2019) introduce CURL that learns task-specific representation
and deals with task ambiguity by performing task inference within the generative
model. This approach directly addresses the problem of forgetting by maintaining
a buffer for original instances of poorly-approximated samples and expanding the
model with a new component whenever the buffer is filled. In BooVae, Egorov et al.
(2021) propose an approach for continual learning of VAE with an additive aggre-
gated posterior expansion. Several works train GANs in continual learning scenar-
ios either with memory replay (Wu et al., 2018), with the extension to VAEGAN in
Lifelong-VAEGAN by Ye and Bors (2020).

In our recent preliminary studies (Zajac et al., 2023), we investigate the prob-
lem of continual learning of deep generative diffusion models. We show that those
powerful generative models suffer from catastrophic forgetting similarly to other
models. We evaluate that classical CL methods can help prevent abrupt loss in

114

performance. However, we also observe interesting phenomena such as overfitting
to the data stored in the memory buffer and the fact that the forgetting changes
with diffusion timesteps.

7.2.1. Knowledge Consolidation with Generative Modelling

As a part of generative continual learning, a group of methods considers gen-
erative models as a focal point of a continually trained system. This assumption
is based on neuroscience research that often serves as an inspiration for continual
learning methods Hayes et al. (2021). In particular, the inspiration most commonly
associated with generative replay relates to the role of a hippocampus – a part of
the human brain that consolidates short-term memories into long-term ones during
sleep (Müller and Pilzecker, 1900). Neurological studies (Dudai et al., 1985; Tem-
pel et al., 1983) highlight that this process requires activity that extends beyond the
duration of the learning process – stimuli that we can understand as an internal
rehearsal. In fact, mechanisms similar to those used in neural networks (feedback
and feedforward connections) are used across many memory-related processes, such
as integration of internal brain states, re-evaluation, and updating of learned infor-
mation and long-term memory consolidation (Krashes and Waddell, 2008; Colomb
et al., 2009; Cognigni et al., 2018). Following this study, Stoianov et al. (2022) intro-
duce a computational theory where the hippocampus is formulated as a hierarchical
generative model with three layers that accumulate knowledge structured to a dif-
ferent level. As presented in (Stoianov et al., 2022), this theory explains the need
for generative replay in the process of knowledge consolidation.

Following these considerations, Thai et al. (2021) evaluate the continual learn-
ing of reconstruction tasks showing that autoencoders are less prone to the problem
of catastrophic forgetting. In our work (Masarczyk et al., 2021), we further explore
this direction and evaluate the robustness of data representations learned with
a generative model. Our experiments indicate that joint modelling significantly
reduces the problem of catastrophic forgetting. Similarly, Rostami et al. (2019)
propose to encode data into the latent space of the autoencoder and approximate
its latent space with Gaussian Mixture Model. Such an approach allows accurate
rehearsal while, at the same time, latent features can be used as input for the con-
tinually trained classifier.

In the same spirit, there exists a group of methods directly inspired by the hu-
man memory system. Kamra et al. (2017) introduces a Deep Generative Dual Mem-
ory Network, where two generative models are used to emulate the hippocampus
and the neocortex. The first encodes short-term memory by rapidly learning a new
task, which is slowly transferred to the second, a long-term memory model. This

115

idea is further enhanced into a triple-memory network (Wang et al., 2021b), where
a system composed of a GAN with an additional independent classifier consolidates
knowledge.

116

8. BinPlay: A Binary Latent Autoencoder

for Generative Replay Continual Learning

Title BinPlay: A Binary Latent Autoencoder
for Generative Replay Continual Learning

Authors Kamil Deja, Paweł Wawrzyński, Wojciech Masarczyk,
Daniel Marczak, and Tomasz Trzciński

Conference 2021 International Joint Conference
on Neural Networks (IJCNN)

Year 2021

DOI 10.1109/IJCNN52387.2021.9534171

Preface

In this work, we look at the latent data representation in generative models
from yet another perspective – an efficient data compression mechanism. To that
end, we introduce a method called BinPlay where a binary autoencoder is used as
a method for efficient storage of data examples. To evaluate this approach, we use
it in the continual learning setup, where generative models are employed to serve
as a source of rehearsal examples for the continually trained classifier.

Contrary to recently proposed methods described in Chapter. 7.1.3, we observe
that instead of using continuous data representations that allow for generation of
new examples from a continuous data distribution, we can focus on several training
examples that can be encoded into categorical values. In particular, we draw our
attention to binary representations that are much more efficient in storage. In fact,
we push this design to the limit and introduce a method for calculating binary codes
that can be used for encoding data examples without a need for their memorisation.

Through a series of experiments we show that binary data representations in
our BinPlay provide an efficient way for the storage of past examples. Moreover,
we show that our autoencoder is able to learn from consecutive tasks and align
different latent representations.

119

Abstract

We introduce a novel binary latent space autoencoder architecture to rehearse
training samples for the continual learning of neural networks. The ability to ex-
tend the knowledge of a model with new data without forgetting previously learned
samples is a fundamental requirement in continual learning. Existing solutions ad-
dress it by regularising network weights, adjusting its architecture, or retraining
with past data samples, regenerated from memory or reconstructed with genera-
tive models. Unfortunately, recreating past data from memory requires an infi-
nite buffer, while the reconstructions of generative models tend to miss details of
individual samples when generalising beyond the training set. In this paper, we
aim to overcome these limitations and introduce a novel generative rehearsal ap-
proach called BinPlay. Its main objective is to find a quality-preserving encoding
of past samples into precomputed binary codes living in the autoencoder’s binary
latent space. Since we parameterise the formula for precomputing the codes only
on the training samples’ chronological indices, the autoencoder is able to compute
the binary codes of rehearsed samples on the fly without the need to keep them in
memory. Evaluation on three benchmark datasets shows up to a twofold accuracy
improvement of BinPlay versus competing generative replay methods.

8.1. Introduction

While mammal brains are capable of acquiring new knowledge without forget-
ting the skills learned in the past French (1999), artificial neural networks fail
to copy this behaviour. The resulting catastrophic forgetting phenomenon French
(1999) manifests itself in the deteriorating performance of a model on a previously
learned task upon learning a new one. This is due to the fact that in the train-
ing phase, a neural network assumes a stationary data distribution that does not
change in time. Hence, re-training the network with new input data adjusts its
weights to improve the current objective’s performance, disregarding previously
seen samples and the associated knowledge Kirkpatrick et al. (2017b). The assump-
tion of stationary data distribution often fails in practice, as numerous applications,
including experimental physics Tilaro et al. (2018), autonomous driving Yang et al.
(2018), robotics Kehoe et al. (2015), and recommendation engines He et al. (2017),
observe ever-growing datasets with changing data characteristics.

A domain of machine learning that attempts to address these requirements is
referred to as continual learning. Methods of continual learning proposed in the
literature include regularisation of neural network weights Zenke et al. (2017b);

120

Figure 8.1.1. Overview of our BinPlay architecture for continual learning. When a new
task arrives, we train the encoder to map new images to a set of precomputed binary codes
in the latent space, and then we train the decoder to reconstruct them back to their originals.
Since we compute the binary codes using only the indices of training data samples, we know
which part of the latent space is populated with the codes of previously seen data. We can
also re-compute those codes on the fly, using the indices, to rehearse past samples. This
way, our BinPlay model can encode information about the past data in the autoencoder’s
binary latent space, without the need to store individual images or their codes in memory.
Visualisation of the main concept of BinPlay is presented in the video: https://youtu.be/
Ob_8q_rwxzg.

Kirkpatrick et al. (2017b), adjustments in the structure of a network to the next
task Xu and Zhu (2018); Yoon et al. (2018); Rusu et al. (2016); Golkar et al. (2019);
Cheung et al. (2019); Wen et al. (2020), or replaying examples from previously seen
tasks while training the network with new data Rebuffi et al. (2017); Lopez-Paz and
Ranzato (2017b), also known as rehearsal training. As storing past data requires
a growing buffer, recent methods for replaying past samples leverage generative
neural architectures Goodfellow et al. (2014b); Kingma and Welling (2014) to recon-
struct previously seen data points from various probability distributions van de Ven
and Tolias (2018); Xiang et al. (2019); Mundt et al. (2020b).

These models, referred to as generative rehearsal methods, theoretically allow
infinite continual learning without inflating past examples’ buffer. However, their
performance is upper-bounded by the quality of the training data recreated with
generative models. Since the most frequently used generative models, such as
Generative Adversarial Networks (GAN) Goodfellow et al. (2014b) and Variational
Autoencoders (VAE) Kingma and Welling (2014), are trained to learn a continu-

121

https://youtu.be/Ob_8q_rwxzg
https://youtu.be/Ob_8q_rwxzg

ous function that describes the entire dataset distribution, they often yield visually
plausible yet low-quality results. For more challenging datasets, generative models
often output blurry images that miss high-frequency details Lesort et al. (2019);
Aljundi et al. (2019). When used as samples for the rehearsal procedure, such ex-
amples lead to the deteriorated performance of neural network models Lesort et al.
(2019).

In this paper, we address these shortcomings by introducing an autoencoder-
-based architecture named BinPlay1 that is able to regenerate the samples seen
in the previous tasks out of a set of precomputed binary codes. Inspired by gen-
erative hashing approaches Carreira-Perpinan and Raziperchikolaei (2015); Mena
and Nanculef (2019); Zamorski et al. (2020), we achieve that goal by designing a
binary latent space autoencoder that learns the most quality-preserving mapping
between data samples from the current task and a set of binary vectors living in the
autoencoder’s latent space. We allocate the pool of binary codes using only a chrono-
logical ordering of training samples, i.e., the ordinal number at which samples are
presented to the model. Since we know the number of data samples seen in previous
tasks, we can rehearse past images by first sampling binary codes uniformly from
the pool of codes already allocated and then decoding them with the decoder. This
way, we do not need to store any binary embeddings for previous tasks in memory.
At the same time, we avoid the problem faced by competing generative rehearsal
methods, namely the implicit requirement for the generative model to generalise
beyond a set of training samples.

Fig. 8.1.1 illustrates the overview of our method. Its general goal is to make
a neural network fit data that are given in subsequent tasks. Therefore, it can
be used in any problem of continual data modelling. In this work, we evaluate
our BinPlay on the image classification benchmarks against competitive approaches
in the most challenging class incremental learning scenario. BinPlay consistently
outperforms state-of-the-art methods on three benchmark datasets while providing
a comparable or lower model memory footprint.

To summarise, the contributions of this work are:
• a new approach to continual learning problem called BinPlay that combines

advantages of generative and buffer-based rehearsal methods by encoding pre-
viously seen samples not in memory but in the binary latent space of an au-
toencoder,

• a novel binary latent space autoencoder architecture which learns a quality-
-preserving, one-to-one mapping between original data samples and predefined
binary codes,

1 We make the code available at https://github.com/danielm1405/BinPlay

122

https://github.com/danielm1405/BinPlay

• a binary code assignment method based on the ordinal number of training
images, which enables the computation of binary codes corresponding to re-
hearsal samples on the fly, without the need to store them in the memory.

The remainder of this paper is organised as follows. In the next section we
overview, the related techniques, Sec. 8.3 introduces our proposed BinPlay approach
and in Sec. 8.4 we present the experiments confirming validity of our method. We
conclude this work in Sec. 8.5.

8.2. Related Works

This work falls within rehearsal Continual Learning methods described in Chap-
ter 7.1.3. Our method regenerates previous examples from a neural model, but
contrary to other generative rehearsal methods we do not aim in learning previous
tasks data distribution. Instead, we can relate to the interesting idea that we can
place in between generative and buffer based rehearsal presented in Caccia et al.
(2020), where authors incorporate VQ-VAE van den Oord et al. (2017) architecture
to compress the original data examples into a special representation that requires
less memory than original images. We extend this idea, and introduce a method
that compresses the data examples to the set of specific binary vectors, which, con-
trary to VQ-VAE, does not have to be stored in the buffer. Our approach is con-
ceptually similar to that in Mundt et al. (2020b). We train an autoencoder with
an increasing set of images to reproduce them for the base model’s future training.

8.3. Method

In this paper, the problem we consider is to efficiently store a base neural net-
work training data, which is coming in subsequent tasks. With those in place, on
the arrival of a new task, we can retrain the base network on the combination of
new data samples and recreations of previous tasks. To regenerate the old data,
we propose a novel binary latent space autoencoder, an auxiliary neural network
inspired by the hashing autoencoder approaches Carreira-Perpinan and Raziper-
chikolaei (2015); Mena and Nanculef (2019); Zamorski et al. (2020). Its objective
is to find an assignment of the input data to a set of predefined binary codes and
then reconstruct them back to the original data. Therefore, the autoencoder’s de-
coder can regenerate past data just by transforming randomly sampled codes. In
Fig. 8.3.1 we show an overview of this mechanism applied to the incremental image
classification problem. The next subsections discuss our approach’s building blocks

123

Figure 8.3.1. Encoding and decoding BinPlay binary latent space codes. We first create
a set of binary codes on the basis of consecutive indices (I). We then train the encoder to
find the best mapping between original inputs and a set of binary codes, and the decoder to
reconstruct them back to their originals (II). To generate all previously encoded inputs, we
only need the decoder and the total number of encoded samples (equal to the last sample’s
index, if counted from 1), so we can recompute the set of binary codes and process them
through the decoder (III).

in more detail, namely the binary latent autoencoder, the definition of binary codes,
and their assignment to input data.

8.3.1. Binary latent autoencoder

The objective of our autoencoder is to reconstruct a set of input points. Therefore,
the encoder needs to learn their mapping to a set of predefined binary codes living
in the autoencoder’s latent space. The decoder, on the other hand, should be able to
reproduce inputs from previous tasks based on the latent binary vectors assigned
to them.

In order to train the binary latent autoencoder network to fulfil the above re-
quirements, we follow the procedure introduced in Shin et al. (2017) and use both
data from a new task and the sampled outputs from its current version. Thanks to
this approach, we learn mappings and reconstructions for the new samples while
preserving the knowledge of the previous ones at the same time. First, we create a
copy, θ′, of current decoder weights, θ, so that decoder with weights θ′ can serve as
a source of previous training pairs for the network.

For the training of our autoencoder, we create a set of training samples by uni-
formly drawing indices i ∈ {1, . . . ,K , . . . , N}, where K is the first index for the current
task, and N is the total number of data points observed so far.

• If i is between 1 and K −1, we generate the input-output pair 〈c(i), p(c(i);θ′)〉,
where c is a binary codes generator function and p is our decoder.

• If i is between K and N, we use the new input-output pair 〈c(i),xi〉, where xi

is an original data input assigned to the index i.

124

With combination of such pairs, we adjust the original weights of our decoder θ

which we train to reconstruct data inputs from their binary codes. To ensure that
the above sampling procedure in the latent space works, we propose an appropriate
binary code definition.

8.3.2. Binary codes definition

As we want to rehearse previously seen data, we require the set of binary codes
within the latent space to be parameterised by an index. Then, in order to produce
a set of uniformly sampled random binary codes that can be used to reconstruct the
previously seen data, we only need to sample a set of indices. Our key requirement
is that:

1. the codes are composed of a large number of bits
2. bits often change between the subsequent indices

This way, codes become easily recognizable inputs for the decoder network. To fulfill
the above requirements, we follow an observation presented below.

Lemma 1. Let λ be a prime number, λ 6= 2, and i ∈ {1, . . . ,2m} be an index coded as m

least significant bits of the integer

i ·λbm ln2/lnλc. (8.1)

Then

1. 2m/λ<λbm ln2/lnλc < 2m.

2. The codes for all the numbers i are different.

Proof: We have
λbm ln2/lnλc <λm ln2/lnλ =λ(logλ 2)m = 2m,

and
λbm ln2/lnλc >λm ln2/lnλ−1 =λ(logλ 2)m−1 = 2m/λ

which proves point 1.
In order to prove point 2, we notice that since λ is prime, and λ 6= 2, λ raised to any

natural power is co-prime with 2m. Suppose there are two different i, j ∈ {1, . . . ,2m}

that have the same code in the form of m least significant bits of (1). That would
mean that

(|i− j| ·λbm ln2/lnλc) mod 2m = 0.

125

That can not be true since λbm ln2/lnλc has no common divisors with 2m and |i− j| is
not divisible by 2m because |i− j| < 2m. ■

With the above observation, we define a coding of the sample index, c :N 7→ {0,1}n,

as follows:
1. The vector c(i) is composed of several subvectors.
2. For a subvector of size m, we assign the m least significant bits of the binary

representation of the formula (8.1) with i as the index, and different base prime
numbers for different subvectors.

As a result of this procedure, the binary codes calculated are different and sparse-
ly distributed. Moreover, as noticed in the Lemma 1, active bits of the codes calcu-
lated with the proposed procedure often change between subsequent codes. Hence
they fulfil our requirements.

In a typical continual learning scenario, data samples within a task share some
similarities, as they are constructed with the assumption of stationary data distri-
bution. Therefore, we append a task index transformed using the procedure above
as a prefix of the binary codes defined for a given task.

8.3.3. Binary codes assignment

Figure 8.3.2. The BinPlay architecture consists of two feed-forward networks. The first
one – binary latent autoencoder – finds the mapping of new training examples to the
predefined binary codes and decodes them to the original training examples with the de-
coder. While training proper reconstruction of the binary codes into new images, we also
feed the decoder with the combinations of previously seen codes and their reconstructions
in the continuous retraining. We train the base network with the generated examples
from the previous data and the current data samples. For the generated examples, we
calculate appropriate labels with a frozen copy of the base network. Only the decoder and
base network are needed to be stored in the memory buffer, while the predefined binary
codes for past data are computed on the fly.

126

Once we define the binary codes for a given task, we need a procedure to map the
original data into this set of codes. For a decoder to properly rehearse past samples,
we need the mapping to provide a single binary code in the latent space for each
data sample. We, therefore, propose the following greedy binary code assignment
algorithm.

Algorithm 2 Designating regularisation losses for binary
codes assignment in BinPlay.

c = set of binary codes, x = set of
images, q = encoder, ϕ = encoders weights

put elements of X in a random order
for all xi from x do

zi = qϕ(xi)
ci = the element of C closest to zi
c= c\{ci}
L i(z)= ‖z− ci‖2

end for

For the set of images x, we generate a set of binary codes c, such that |x| =
|c| ¿ 2n, where n is a size of the latent space. Then, while training our binary
latent autoencoder, we extend the original reconstruction loss with an additional
regularization term. To compute this term, we assign a yet unassigned binary code
to each sample that lies at the lowest distance to the sample. Then, we calculate
the distance between data embedding in the latent space and its associated binary
code as a L2 norm. The final regularization is a sum of the distances computed
across all of the images from the task. Since this procedure is highly affected by
the ordering of the samples, in each epoch, we shuffle the input images x. Alg. 2
presents a general overview of the assignment procedure.

8.3.4. Training

With the building blocks of BinPlay introduced above, we can now describe how
to train the whole model. Fig. 8.3.2 overviews the training procedure.

On the arrival of a new task, we first train the binary latent autoencoder. We
train its encoder to assign new examples to their binary codes and the decoder to
reconstruct them back to the original form. To retain the knowledge derived from
the previous data, we use the training procedure as defined in Sec. 8.3.1. To enable
faster convergence, we start training autoencoder without enforcing the binary reg-
ularisation of the latent space and turn the binary code assignment of Alg. 2 after
a couple of warm-up rounds. This allows the autoencoder to cluster similar data
samples in the latent space before mapping them to the allowed binary codes. Once

127

the encoder converges on the mappings between the input points and their binary
codes, we save the mappings and omit the encoding loss to focus on the decoder.For
training simplicity, we use the binary code values of {-1,1}, instead of {0,1}, as this
facilitates the decoding procedure.

Our base network aims to minimise the loss averaged over current data and a
sample of the previous tasks. On the arrival of a new task, we train the network
with the new samples together with the samples regenerated from the binary codes
sampled uniformly from the allocated pool in the autoencoder latent space. The
new samples are processed through the autoencoder before using them as an input
for training so that the base network does not focus on differences between the real
and generated data but rather on the general image features that enable accurate
classification. For the regenerated past samples, we train the base network to pre-
dict the same output distribution values as its copy – frozen before the training.
Consequently, for classification tasks, we use soft targets Hinton et al. (2015) in-
stead of the ground truth labels. Tab. 8.3.1 shows the results of the ablation study
supporting the design choices presented in this section.

Modification Results
Reference configuration 23.8
+ processing new samples

through autoencoder 54.0
+ soft targets 63.3

Table 8.3.1. Ablation study for the training procedures of the base network. We report the
average classification accuracy after the last task on the CIFAR-10 dataset. As a reference
configuration, we take a base network trained on both original (current task) and generated
(previous tasks) data samples. Preprocessing incoming new samples with an autoencoder
and using soft targets improves the performance of our final continual learning model.

8.4. Experimental Study

We evaluate BinPlay on three commonly used benchmarks: MNIST LeCun et al.
(2010), Fashion-MNIST Xiao et al. (2017), and CIFAR-10 Krizhevsky et al. (2009).
To simulate the real setting of continual learning, we evaluate our model with
the class-incremental scenario. This means that in each task, we introduce new
classes to the scope of our model. In particular, we follow the split-MNIST split-
-FashionMNIST and split-CIFAR procedure that divides the dataset into 5 separate
tasks with all training examples of classes: {0,1}, {2,3}, {4,5}, {6,7}, {8,9}, accordingly.

MNIST and Fashion-MNIST

128

For both MNIST datasets, we propose the architecture based on a convolutional
neural network. For the encoder and the decoder, we use 3 convolutional/transposed
convolutional layers and 2 fully connected layers around the latent space of size 200.

Our classifier is based on the LeNet Lecun et al. (1998) architecture with 3 con-
volutional layers followed by two fully connected ones. We use batch normalisation
and dropout. Detailed implementation information can be found in the released
codebase.

CIFAR-10 For the CIFAR-10 dataset, we employ similar network architectures as
for MNIST and Fashion-MNIST but with a greater number of filters. Additionally,
to simplify the encoding procedure for more complex images, we extend the binary
latent size to 1000. For the classifier, we only adjust the previous LeNet architecture
to the CIFAR-10 image size, which is 32×32×3 pixels.

Data Model MNIST Fashion CIFAR–10
storage MNIST

M
em

or
y

bu
ffe

r

GEM Lopez-Paz and Ranzato (2017b) 91.8 ± 0.3 70.3 ± 0.7 17.5 ± 1.6
iCARL Rebuffi et al. (2017) 71.7 ± 0.5 67.7 ± 0.4 32.4 ± 2.1
ER Chaudhry et al. (2019) 84.5 ± 1.6 70.2 ± 1.7 41.3 ± 1.9
ER–MIR Aljundi et al. (2019) 91.8 ± 0.5 69.7 ± 2.7 47.6 ± 1.1

Both AQM Caccia et al. (2020) 93.6 ± 0.7 67.4 ± 0.3 51.4 ± 2.2

G
en

er
at

iv
e

re
-

pl
ay

GEN-MIR Aljundi et al. (2019) 86.6 ± 0.3 52.4 ± 1.5 18.8 ± 0.9
OCDVAE Mundt et al. (2020b) 93.2 ± 3.7 69.9 ± 1.7 21.6
GR Shin et al. (2017) 92.5 ± 0.5 68.0 ± 0.9 27.3 ± 1.3
GR+distill Van de Ven and Tolias (2019) 95.6 ± 0.2 78.1 ± 1.0 28.4 ± 0.3
RTF van de Ven and Tolias (2018) 95.1 ± 0.3 75.2 ± 0.8 28.7 ± 0.2
BinPlay (ours) 97.2 ± 0.6 81.4 ± 0.9 63.3 ± 1.4

Table 8.4.1. Average accuracy after the final task in the class incremental scenario (in % ±
SEM). We report the results for memory-buffer based (top) and generative replay (bottom)
methods on MNIST, Fashion MNIST, and CIFAR-10. Our approach clearly outperforms
competitive approaches on all three benchmarks.

8.4.1. Results

We compare the accuracy of our models’ predictions. For that purpose, we run
the experiment through all 5 tasks to report the average accuracy on the whole
test-set after the final one. For the related methods, we report the results from
the original works. However, for several techniques, authors openly state that their
methods do not scale well for more complex datasets such as CIFAR-10 Aljundi
et al. (2019); Lesort et al. (2019). Hence, in case of missing evaluations on any
benchmarks, we ran the experiments with the code provided by the authors and

129

report the results averaged across 3 runs. As presented in Tab. 8.4.1, those exper-
iments demonstrate that our solution clearly outperforms other generative replay
approaches on all benchmark datasets. Additionally, in Fig. 8.4.2 we show that
our BinPlay is only slightly affected by the number of consecutive tasks, and the
deterioration of the results is rather the effect of the increasing complexity of the
problem.

This is mainly thanks to the fact that our model can recreate sharp images with
high-quality visual features. These are a valuable source of previous examples for
the base classifier. To support this claim in Fig. 8.4.1, we show that our method
is able to recreate rich images even after four tasks of not related data examples.
This is contrary to the other generative rehearsal procedures such as RtF van de
Ven and Tolias (2018) that produce blurry images already from the start.

Figure 8.4.1. Examples of the reconstructions (BinPlay) and generations (RtF van de Ven
and Tolias (2018)) of the images from the CIFAR-10 dataset. Our method is able to recre-
ate high-quality images even after four following tasks. On the contrary to the current
state-of-the-art generative replay method (RtF), images are sharp and allow the classifier
to rehearse also high-frequency features from regenerated images.

We also measure the memory footprint of our generative model. We compare it
with the current generative rehearsal methods and the space requirements for the
memory-buffer based ones. The results of this comparison are shown in Tab. 8.4.2.
Our model is much more compact than the other generative rehearsal ones. That
is thanks to the fact that we have to store only the convolutional decoder of the two
parts of the generative autoencoder.

When compared to the rehearsal models with the buffer, our solution requires
more space than experience replay methods. However, space requirement for our
BinPlay architecture is constant. Our model does not grow with the number of tasks
served, contrary to the buffer of standard rehearsal methods.

130

(a) (b)

Figure 8.4.2. Visualisation of the classification accuracy observed on the consecutive tasks.
For CIFAR-10 (left), the accuracy of our model deteriorates steadily, and it is related to the
increasing complexity of the general classification problem rather than the task index. For
simple datasets, such as MNIST (right), we can observe steady performance through all
tasks.

8.4.2. Future work

The BinPlay approach for generative rehearsal presented in this work relies on
a binary latent autoencoder and the construction of binary codes living in the la-
tent space. Although the design choices we describe already lead to a significant
performance improvement of BinPlay over the competing methods, we can envision
several new research paths that are enabled by our work. The currently used bi-
nary encoding parameterisation presented in Sec. 8.3 relies on a simple yet effec-
tive method to populate latent space. One potential direction of future research is
the incorporation of other parameterisation methods, including trainable models
with divergence loss functions. Another path of future work can explore other than
binary latent space types and the corresponding encodings. In the future work, we
also plan to discuss the vulnerability of our method to the diverse types of concept
drifts Losing et al. (2017), defined as the observable phenomena of changing data
distributions between tasks. Finally, we believe that the work presented here is
a stepping stone towards discovering the relationship between generative models
used in rehearsal and other compression techniques. Are generative models indeed
used to compress previously learned knowledge or rather to represent the pattern
for generating images of the same kind? Our empirical evaluation indicates that
it is rather the latter, yet further research can definitely shed more light on this
question.

131

Model MNIST Fashion CIFAR–10
MNIST

Memory-buffer
based methods 0.7 0.7 2.9

AQM Caccia et al. (2020) 1.3 1.3 2.4
OCDVAE Mundt et al. (2020b) 115.9 115.9 -
GEN-MIR Aljundi et al. (2019) 5.0 11.8 34.0
GR Shin et al. (2017) 4.4 15.6 32.3
GR+distill Van de Ven and Tolias (2019) 4.4 15.6 32.3
RTF van de Ven and Tolias (2018) 4.4 15.6 32.3
BinPlay (ours) 4.6 4.6 21.0

Table 8.4.2. Memory requirements of continual learning method (in MB). For generative re-
play methods, it is calculated as the memory required to store the generative model weights.
For memory-buffer based methods, it is the size of the buffer of 100 memories after the last
task. We do not take into account any compression mechanisms neither for images nor
for models. However, AQM Caccia et al. (2020) method includes an embedded compression
mechanism, and therefore the corresponding results are presented here for the sake of com-
pleteness. For generative replay methods (bottom), BinPlay requires comparable (MNIST)
or smaller (Fashion MNIST and CIFAR-10) amount of memory comparing to the competing
models while yielding higher accuracy, as shown in Tab. 8.4.1. Moreover, the bigger and
more complex the dataset, the more profound the memory savings offered by BinPlay are.

8.5. Conclusions

In this work, we proposed a novel approach for continual learning with gen-
erative replay. Our BinPlay approach introduces a novel binary latent space au-
toencoder architecture to embed past tasks as binary codes that can be later re-
constructed on the fly from a simple and deterministic parameterisation function.
Inspired by memory-buffer based models, we used binary latent space to store past
data inputs as efficient binary codes while avoiding typical shortcomings of com-
peting generative models that regenerated similar but lower-quality samples from
the past. The evaluation comparison of our approach against state-of-the-art mod-
els clearly shows the superiority of BinPlay in terms of average accuracy on three
benchmark datasets at a similar or smaller memory footprint than the competing
generative rehearsal methods.

132

9. Multiband VAE: Latent Space

Alignment for Knowledge Consolidation

in Continual Learning

Title Multiband VAE: Latent Space Alignment for Knowledge Consolidation
in Continual Learning

Authors Kamil Deja, Paweł Wawrzyński, Wojciech Masarczyk,
Daniel Marczak, and Tomasz Trzciński

Journal Proceedings of the Thirty-First International
Joint Conference on Artificial Intelligence IJCAI2022

Year 2022

DOI 10.24963/ijcai.2022/402

Preface

In this chapter, we extend the previous work and place a generative model in
the focal point of the continually trained system. We postulate that this family
of methods is a promising direction for a general system of continuous knowledge
consolidation. We base this statement on three fundamental aspects of generative
models.

Firstly, in our previous work (Masarczyk et al., 2021), we showed that neural
networks trained with a reconstructive task are less prone to the problem of catas-
trophic forgetting. In this work, we analysed how data representations of the model
change when retrained with a new task, depending on the training objective. Our
experiments indicated that forgetting in generative models is gradual and mono-
tonic, contrary to the discriminative models, where it usually happens abruptly.
Moreover, we show that generative models learn more transferable features better
aligned between tasks.

Secondly, the ability of generative models to generate synthetic samples pro-
vides a complementary method for generative rehearsal. This is contrary to the
discriminative tasks, where an additional structure in the form of a memory buffer
or additional generative model has to be used to store past data examples. Moreover,
rehearsal samples generated by a generative model align well with how the model
encodes the information.

Finally, as we present in this chapter, low-dimensional data representations of
the latent generative models are more efficient for continual knowledge consolida-
tion. This is primarily thanks to the well-structured knowledge encoded by the gen-
erative autoencoder. In particular, in this chapter, we introduce Multiband VAE
– a method for continual alignment of knowledge represented in the variational
autoencoder’s latent space. We propose a new approach, where an update of the
continually trained VAE is divided into two parts. In the first one, we use a fresh
model to learn the encoding of newly available data. In the second one, we align pre-
vious and new data with an additional MLP projector working in the latent space
of the VAE.

In a series of experiments, we show that our approach can properly encode data
from entirely different distributions as well as partially similar examples. In the
latter situation, where we retrain the model with a new portion of partially simi-
lar data, we show that we can improve the model’s performance, showing positive
backward and forward knowledge transfer.

135

Abstract

We propose a new method for unsupervised generative continual learning
through realignment of the Variational Autoencoder’s latent space. Deep gener-
ative models suffer from catastrophic forgetting in the same way as other neural
structures. Recent generative continual learning works approach this problem and
try to learn from new data without forgetting previous knowledge. However, those
methods usually focus on artificial scenarios where examples share almost no sim-
ilarity between subsequent portions of data – an assumption not realistic in the
real-life applications of continual learning. In this work, we identify this limitation
and posit the goal of generative continual learning as a knowledge accumulation
task. We solve it by continuously aligning latent representations of new data that
we call bands in additional latent space where examples are encoded independently
of their source task. In addition, we introduce a method for controlled forgetting of
past data that simplifies this process. On top of the standard continual learning
benchmarks, we propose a challenging knowledge consolidation scenario and show
that the proposed approach outperforms state-of-the-art by up to twofold across all
experiments and the additional real-life evaluation. To our knowledge, Multiband
VAE is the first method to show forward and backward knowledge transfer in gen-
erative continual learning.

9.1. Introduction

Figure 9.1.1. Overview of our Multiband VAE. With each new task, we first learn a local
copy of our model to encode new data examples. Then we consolidate those with our current
global decoder - main model which is able to generate examples from all tasks.

Recent advances in generative models (Goodfellow et al., 2014b; Kingma and

136

Welling, 2014) led to their unprecedented proliferation across many real-life appli-
cations. This includes high energy physics experiments at Large Hadron Collider
(LHC) at CERN, where they are employed to speed up the process of particles colli-
sions simulations (Paganini et al., 2018; Deja et al., 2020; Kansal et al., 2021).

Those applications are possible, thanks to the main objective of generative meth-
ods, which is the modelling of complex data manifolds with simpler distributions.
Unfortunately, this goal remains difficult to deliver in real-life situations where
training data is presented to the model in separate portions, e.g., from consecutive
periods of data gathering at CERN. The distributions of data within these portions
often vary significantly, hence updating model with new examples leads to catas-
trophic forgetting of previous knowledge. In generative modelling this is observed
through limited distribution of generated examples.

Generative continual learning methods aim to address these challenges usually
in one of three ways: through regularisation (e.g. (Nguyen et al., 2018)), adjust-
ment of the structure of a network to the next task (e.g. (Rao et al., 2019)), or re-
hearsal of previously seen samples when training with new data (e.g. (Rebuffi et al.,
2017)). Nevertheless, practical applications of those methods are yet limited, so
most of them focus on the artificial class-incremental (CI) training scenario. In this
approach, consecutive portions of data (tasks) contain disjoint classes and share
almost no similarity. While this is the most difficult scenario for discriminative
models, we argue that the assumption of classes separation greatly simplifies the
problem in generative modelling where task index might be used without reducing
the method’s generality (detailed discussion in the appendix).

Moreover, the assumption of task independence in CI scenario reduces the com-
plexity of continual learning (Ke et al., 2021). Therefore, in this work, we postu-
late to investigate the adaptation of generative continual learning methods to the
ever-changing data distribution. While, for the CI scenario, we expect no forgetting
of previous knowledge, in other scenarios, where model is retrained with additional
partially similar data, we should aim for performance improvement. This can be
observed through forward knowledge transfer – higher performance on a new task,
thanks to already incorporated knowledge, and backward knowledge transfer – bet-
ter generations from previous tasks, when retrained on additional similar exam-
ples (Lopez-Paz and Ranzato, 2017a).

Therefore, to simulate real-life conditions, we prepare a set of diversified con-
tinual learning scenarios with data splits following Dirichlet distribution, inspired
by a similar approach in federated learning (Hsu et al., 2019). Our experiments
indicate that this is indeed a more challenging setup for the majority of recent

137

state-of-the-art continual generative models, which lack sufficient knowledge shar-
ing between tasks.

To mitigate this problem, we propose a Multiband VAE. The core idea behind our
method is to split the process of model retraining into two steps: (1) a local encoding
of data from the new task into a new model’s latent space and (2) a global rearrange-
ment and consolidation of new and previous data. In particular, we propose to align
local data representations from consecutive tasks through the additional neural
network. In reference to the way how radio spectrum frequencies are allocated, we
name data representations from different tasks bands. As in telecommunication,
our goal is to limit interference between bands. However, we train our model to align
parts that represent the same or similar data. To support knowledge consolidation
between different bands, we additionally propose a controlled forgetting mechanism
that enables the substitution of degraded reconstructions of past samples with new
data from the current task.

The main contributions of this work are:
• A novel method for generative continual learning of Variational Autoencoder

that counteracts catastrophic forgetting while being able to align even partially
similar tasks at the same time.

• A simple method for controlled forgetting of past examples whenever a new
similar data is presented.

• A novel knowledge consolidation training scenario that underlines limitations
of recent state-of-the-art methods.

9.2. Related Works

In this work, we directly extend the basic idea of training generative models
in continual learning described as Generative Replay (Lesort et al., 2019). We
also incorporate the disentanglement method with binary latent space, similarly to
Ramapuram et al. (2020) In the experimental setup we compare our solution with
different methods for continual learning of generative models such as Generative
Replay (Lesort et al., 2019), Variational Continual Learning (Nguyen et al., 2018),
HyperCL (von Oswald et al., 2019), CURL (Rao et al., 2019), Lifelong VAE (Ramapu-
ram et al., 2020) and Lifelong-VAEGAN (Ye and Bors, 2020) overviewed in Sec. 7.2.

138

9.3. Method

In this section, we introduce Multiband VAE – a method for consolidating knowl-
edge in a continually learned generative model. We propose to split generative re-
play training into two parts: (1) a local training that allows us to build a new data
representations band in the latent space of VAE, and (2) global training where we
attach a newly trained band to the already trained global model. As a part of the
global training, we propose a controlled forgetting mechanism where we replace
selected reconstructions from previous tasks with currently available data.

9.3.1. Knowledge Acquisition – Local Training

In the local training, we learn a new data representations band by training a
VAE using only currently available data.

Let xi
j denote the j-th sample of i-th task. Then, for given sample xi

j, and latent
variable λi

j we use a decoder pθ, which is trained to maximise posterior probability
p(xi

j|λi
j). To get the latent variable λi

j, we use encoder qϕ parameterised with weights
vector ϕ that approximates probability q(λi

j|xi
j).

To simplify the notation, let us focus on specific task i and drop the index. As
in standard VAE, we follow optimisation introduced by Kingma and Welling (2014)
that maximises the variational lower bound of log likelihood:

Llocal =max
ϕ,θ

Eq(λ|x)[log p(x|λ)]−DKL(q(λ|x)‖N(⃗0, I))). (9.1)

where ϕ and θ are weights of encoder and decoder respectively. In the first task,
this is the only part of the training, after which local decoder is remembered as a
global one. In other cases we drop local decoder.

9.3.2. Shared Knowledge Consolidation

In the second – global part of the training, we align the newly trained band
with already encoded knowledge. The simplest method to circumvent interference
between bands is to partition the latent space of VAE and place new data represen-
tation in a separate area of latent space. However, such an approach limits informa-
tion sharing across separate tasks and hinders forward and backward knowledge
transfer. Therefore, in Multiband VAE we propose to align different latent spaces
through an additional neural network that we call translator. Translator maps
individual latent spaces which are conditioned with task id into the common global

139

Translator

Latent spaces λ

Latent space 𝒛
Task 1

Task 2

Task 3

Figure 9.3.1. Our translator maps individual regularised latent spaces λ created by differ-
ent local models to one global latent space z, where examples are stored independently of
their source task.

one where examples are stored independently of their source task, as presented in
Fig 9.3.1.

To that end, we define a translator network tρ(λi, i) that learns a common align-
ment of separate latent spaces λi conditioned with task id i to a single latent vari-
able z , where all examples are represented independently of their source task. Fi-
nally, we propose a global decoder pθ(x|z) that based on distribution approximated
with latent variables z learns to approximate original data distribution x.

To counteract forgetting, when training translator and global decoder we use
auto-rehearsal as in standard generative replay, with a copy of the translator and
decoder frozen at the beginning of the task. As training pairs, we use combination
of original images x with their encodings from local encoder λ, and for previous
tasks, random values λ with generations x reconstructed with a frozen translator
and global decoder. Fig. 9.3.2 presents the overview of this procedure.

We start translator training with a frozen global decoder, to find the best fitting
part of latent space z for a new band of data without disturbing previous generations.
For that end we minimise the reconstruction loss:

Ltranslator =min
ρ

k∑
i=1

||xi − pθ(tρ(λi, i))||22, (9.2)

where k is the number of all tasks.
Then, we optimise parameters of translator and global decoder jointly, minimis-

ing the reconstruction error between outputs from the global decoder and training
examples

Lglobal =min
ρ,θ

k∑
i=1

||xi − pθ(tρ(λi, i))||22, (9.3)

To generate new example t with Multiband VAE, we randomly sample task id i ∼

140

Figure 9.3.2. We train our translator and global decoder with new data encoded to latent
space λ associated with original images, and samples of previous data generations gener-
ated in a standard rehearsal schema.

Translator

Latent spaces λ Latent space z

Samples from

previous tasks

New data

representations
Previous

generation

New

example

Training pairs

λ1

λ2

λ3

x1

x3

x2

Figure 9.3.3. When creating rehearsal training pairs with generations from previous data
examples, we calculate the similarity between sampled example and the closest currently
available data sample in the common latent space z. If this similarity is above a given
threshold, we allow forgetting of the previous reconstruction by substituting the target gen-
eration with a currently available similar image.

U({1, . . . ,k}), where k is the number of all tasks and latent representation λt ∼N(⃗0, I).
These values are mapped with translator network to latent variable zt, which is the
input to global decoder to generate xt. Therefore, translator and global decoder are
the only models that are stored in-between tasks.

9.3.3. Controlled Forgetting

In a real-life scenario, it is common to encounter similar data examples in many
tasks. In such a case, we would like our continuously trained model to refresh
the memory of examples instead of combining vague, distorted memories with new
instances. Therefore, we propose a mechanism for controlled forgetting of past re-
constructions during the translator and global decoder joint training. To that end,
when creating new training pairs, we compare representations of previous data re-
constructions generated as new targets with representations of data samples from
the current task in the common latent space z. If these representations are similar

141

Figure 9.3.4. Visualisation of latent space z and generations from VAE in standard Gen-
erative Replay and our multiband training for the three tasks (different colours) in a case
of entirely different new data distribution, and partially same classes. GR does not in-
stantly separate data from different tasks, which results in the deformation of previously
encoded examples. Contrary, our Multiband VAE can separate representations from differ-
ent classes while properly aligning examples from the same new class if present.

enough, we substitute previous data reconstruction with the current data sample
as presented in Fig. 9.3.3.

More specifically, when training on task i, we first create a subset Zi = tρ(qϕ(xi), i)
with representations of all currently available data in joint latent space z. Now,
for each data sample xl

j generated as a rehearsal target from previous task l < i
and random variable λl

j, we compare its latent representation z j = tρ(λl
j, j) with all

elements of set Zi

sim(z j) := max
zq∈Zi

cos(z j, zq). (9.4)

If sim(z j)≥ γ we substitute target sampled reconstruction xl
j with respective original

image from xi. Intuitively, γ controls how much do we want to forget from task to
task, with γ= 0.9 being a default value for which we observe a stable performance
across all benchmarks.

9.4. Experiments

To visualise the difference between Generative Replay and Multiband VAE, in
Fig. 9.3.4 we present a toy-example with the MNIST dataset limited to 3 tasks with
data examples from 3 classes. When presented with data from a new distribution
(different class in task 2), our method places a new band of data in a separate part of
a common latent space z. On the other hand, the standard generative replay model

142

Class incremental Dirichlet α=1 Dirichlet α=100

Figure 9.4.1. Class splits for different continual learning scenarios. In class incremental
split each task consists of separate classes. For α= 1 Dirichlet distribution, we have highly
imbalanced splits with randomly occurring dominance of one or two classes. For higher
values of parameter α, classes are split almost equally.

learns to transform some of the previous data examples into currently available
samples before it can distinguish them, even with additional conditioning on task
identity. At the same time, when presented data with partially same classes as
in task 3, our translator is able to properly align bands of data representations so
that similar data examples (in this case ones) are located in the same area of latent
space z independently of the source task, without interfering with zeros and twos.

9.4.1. Evaluation Setup

For fair comparison, in all evaluated methods we use a Variational Autoencoder
architecture similar to the one introduced by Nguyen et al. (2018), with nine dense
layers. However, our Multiband VAE is not restricted to any particular architecture,
so we also include experiments with a convolutional version. The exact architecture
and training hyperparameters are enlisted in the appendix and code repository1.
We do not condition our generative model with class identity since it greatly simpli-
fies the problem of knowledge consolidation and applies to all evaluated methods.
However, similarly to Ramapuram et al. (2020), we use additional binary latent
space trained with Gumbel softmax (Jang et al., 2016).

9.4.2. Evaluation

To assess the quality of our method, we conduct a series of experiments on bench-
marks commonly used in continual learning (MNIST, Omniglot (Lake et al., 2015))
and generative modelling – FashionMNIST (Xiao et al., 2017). Since the perfor-
mance of VAE on diverse datasets like CIFAR is limited, in order to evaluate how
our method scales to more complex data, we include tests on CelebA (Liu et al.,
2015b). For each dataset, we prepare a set of training scenarios designed to eval-

1 https://github.com/KamilDeja/multiband_vae

143

https://github.com/KamilDeja/multiband_vae

Split-MNIST MNIST Split-Fashion MNIST Fashion MNIST CERN
Class Incremental Dirichlet α= 1 Class Incremental Dirichlet α= 1 Class Inc.

Num. tasks 5 10 5 10 5
Measure FID ↓ Prec ↑ Rec ↑ FID ↓ Prec ↑ Rec ↑ FID ↓ Prec ↑ Rec ↑ FID ↓ Prec ↑ Rec ↑ Wass ↓
SI 129 77 80 153 75 76 134 28 24 140 21 19 21.1
EWC 136 73 82 120 79 83 126 25 25 137 24 22 29.7
Generative replay 120 79 87 254 70 65 96 43 58 133 35 43 11.1
VCL 68 85 94 127 78 80 104 30 32 138 21 20 24.3
HyperCL 62 91 87 148 78 75 108 46 33 155 35 21 7.8
CURL 107 95 77 181 84 74 86 47 64 83 46 56 16.8
Livelong-VAE 173 75 72 224 63 73 131 33 62 201 9 49 7.7
Livelong-VAEGAN 48 98 89 131 90 83 78 54 79 108 54 64 15.1
Multiband VAE 24 94 97 41 92 96 61 66 69 82 62 65 6.6
Multiband VAE (conv) 23 92 98 30 92 97 56 65 72 77 58 69 8.1

Table 9.4.1. Average FID and distribution Precision (Prec) and Recall (Rec) or Wasser-
stein distance between original and generated simulation channels, after the final task in
different data incremental scenarios. Our method with vanilla architecture outperforms
competing solution.

Split-Omniglot Split-Omniglot Omniglot FashionM→MNIST MNIST→FashionM
Class Incremental Class Incremental Dirichlet α= 1 Class Incremental Class Incremental

Num. tasks 5 20 20 10 10
Measure FID↓ Prec↑ Rec↑ FID↓ Prec↑ Rec↑ FID↓ Prec↑ Rec↑ FID↓ Prec↑ Rec↑ FID↓ Prec↑ Rec↑
SI 48 87 81 115 64 28 140 18 16 146 18 15 157 21 19
EWC 46 88 81 106 68 31 106 74 38 119 72 30 133 25 23
Generative replay 45 88 82 74 72 62 92 75 53 99 36 45 111 24 39
VCL 48 87 82 122 62 21 127 71 25 81 45 51 79 45 55
HyperCL 54 86 76 98 86 45 115 84 38 128 31 28 143 30 28
CURL 22 95 95 31 96 92 26 94 92 98 69 42 122 47 37
Lifelong-VAE 49 87 83 79 83 59 93 83 51 173 13 50 200 12 52
Lifelong-VAEGAN 31 96 90 71 83 70 63 85 78 127 34 61 91 52 73
Multiband VAE 21 97 93 33 95 86 41 95 83 51 65 70 49 67 73
Multiband VAE (conv) 12 98 96 24 95 91 24 96 91 49 68 70 49 70 70

Table 9.4.2. Average Fréchet Inception Distance (FID) and distribution Precision (Prec)
and Recall (Rec) after the final task in different data incremental scenarios. In more chal-
lenging datasets Multiband VAE outperforms competing solutions.

uate various aspects of continual learning. This is the only time we access data
classes, since our solution is fully unsupervised.

To assess whether the model suffers from catastrophic forgetting, we run class
incremental scenarios introduced by Van de Ven and Tolias (2019). However, CI
simplifies the problem of learning data distribution in the generative model’s latent
space since the identity of the task conditions final generations. Therefore, we also
introduce more complex data splits with no assumption of independent task distri-
butions. To that end, we split examples from the same classes into tasks, according
to the probability q ∼ Dir(αp) sampled from the Dirichlet distribution, where p is a
prior class distribution over all classes, and α is a concentration parameter that con-
trols similarity of the tasks, as presented in Fig. 9.4.1. In particular, we exploit the
Dirichlet α= 1 scenario, where the model has to learn the differences between tasks
while consolidating representations for already known classes. In such a scenario
we expect forward and backward knowledge transfer between tasks.

144

CelebA split Class Incremental Dirichlet α= 1 Dirichlet α= 100 Single split
Num. tasks 5 10 10 1
Measure FID↓ Prec↑ Rec↑ FID↓ Prec↑ Rec↑ FID↓ Prec↑ Rec↑ FID↓ Prec↑ Rec↑
Separate models 103 31 21 105 24.5 7.6 109 28.4 10.6

88 35 30Generative Replay 105 23.4 14.9 109 14.6 7.4 102 17.2 11.6
Multiband VAE 95 28.5 23.2 93 33 22 89 36.2 28

Table 9.4.3. Average FID, distribution Precision, and Recall after the final task on the
CelebA dataset. Our Multiband VAE consolidates knowledge from separate tasks even in
the class incremental scenario, clearly outperforming other solutions. With more even splits
our method converges to the upper bound which is a model trained with full data availability.

To measure the quality of generations from different methods, we use the Fréchet
Inception Distance (FID) (Heusel et al., 2017). As proposed by Bińkowski et al.
(2018), for simpler datasets, we calculate FID based on the LeNet classifier pre-
-trained on the whole target dataset. Additionally, we report the precision and recall
of the distributions as proposed by Sajjadi et al. (2018). As authors indicate, those
metrics disentangle FID score into two aspects: the quality of generated results
(Precision) and their diversity (Recall).

For each experiment, we report the FID, Precision, and Recall averaged over the
final scores for each task separately. For methods that do not condition generations
on the task index (CuRL and LifelongVAE), we calculate measures in comparison to
the whole test set. The results of our experiments are presented in Tab. 9.4.1 and
Tab. 9.4.2, where we show scores averaged over three runs with different random
seeds.

To compare different continual-learning generative methods in a real-life sce-
nario we also use real data from detector responses in the LHC experiment.
Calorimeter response simulation is one of the most profound applications of gen-
erative models where those techniques are already employed in practice (Paganini
et al., 2018). In our studies, we use a dataset of real simulations from Zero Degree
Calorimeter in the ALICE experiment at CERN introduced by Deja et al. (2020),
where a model is to learn outputs of 44×44 resolution energy depositions in calorime-
ter. Following Deja et al. (2020), instead of using FID, for evaluation, we benefit
from the nature of the data and compare the distribution of real and generated
channels – the sum of selected pixels that well describe the physical properties of
simulated output. We report the Wasserstein distance between original and gener-
ated channels distribution to measure generations’ quality. We prepare a continual
learning scenario for this dataset by splitting examples according to their input en-
ergy, simulating changing conditions in the collider. In practice, such split lead to
continuous change in output shapes with partial overlapping between tasks – sim-

145

Generative replay Multiband VAE

Figure 9.4.2. Comparison of Wasserstein distance ↓ between original simulation channels
and generations from VAE trained with standard GR and our multiband training. Multi-
band VAE well consolidates knowledge with forward transfer (each row starts with better
score) and backward knowledge transfer (improvement for some rows when retrained with
more data). At the same time standard GR struggles to retain quality of generations on old
tasks.

ilarly to what we can observe with Dirichlet based splits on standard benchmarks
(see appendix for more details and visualisations).

As presented in Tab. 9.4.1, our model outperforms comparable methods in terms
of quality of generated samples. Results of comparison on the Omniglot dataset
with 20 splits (Tab. 9.4.2) indicate that for almost all of related methods, training
with the data splits according to the Dirichlet α = 1 distribution poses a greater
challenge than the class incremental scenario. However, our Multiband VAE can
precisely consolidate knowledge from such complex setups, while still preventing
forgetting in CI scenario. This is only comparable to CURL that achieves this goal
through additional model expansion. Experiments on more complex joint datasets,
where examples are introduced from one dataset after another, indicate the superi-
ority of Multiband VAE over similar approaches. In the real-life CERN scenario, our
model also clearly outperforms other solutions. In Fig. 9.4.2 we present how genera-
tions quality for this dataset changes in standard generative replay and Multiband
VAE, showing both forward and backward knowledge transfer in Multiband VAE.

Finally, we evaluate our model with a more complex dataset – CelebA with over
200 000 images of celebrity faces in 64x64 resolution. Based on annotated features,
we split the dataset into 10 classes based on the hair colour/cover (blonde, black,
brown, hat, bald or gray). In Tab. 9.4.3 we show the results of experiments with this
dataset split in class incremental and Dirichlet scenarios. For class incremental
scenario, Multiband VAE learns to separate bands of examples from different tasks

146

Modification FID↓
Generative replay 254
+ Two step training 64
+ Translator 53
+ Binary latent space 44
+ Controlled forgetting 41
+ Convolutional model 30

Table 9.4.4. Ablation study on the MNIST dataset with Dirichlet α= 1 distribution. Aver-
age FID after the last task.

with disjoint distributions, while results improve if in training scenario model is pre-
sented with more similar examples. In the latter case, with Dirichlet α= 100 splits,
our model reaches the quality of the upper bound, which is a standard Variational
Autoencoder trained with full access to all examples in the stationary training.

Ablation study The main contribution of this work is a multiband training proce-
dure, yet we also introduce several mechanisms that improve knowledge consolida-
tion. Tab. 9.4.4 shows how those components contribute to the final score.

9.4.3. Memory Requirements and Complexity

The memory requirements of Multiband VAE are constant and equal to the size
of the VAE with an additional translator, which is a small neural model with 2 fully
connected layers. When training on the new task, our method requires additional
temporary memory for the local model freed when finished. This is contrary to sim-
ilar methods (HyperCL, VCL, CURL) which have additional constant or growing
memory requirements. Computational complexity of our method is the same as for
methods based on generative rehearsal (VCL, LifelongVAE, Lifelong-VAEGAN). In
experiments, we use the same number of epochs for all methods, while for Multi-
band VAE we split them between local and global training.

9.5. Conclusion

In this work, we propose a new method for unsupervised continual learning of
generative models. We observe that the currently employed class-incremental sce-
nario simplifies the continual learning of generative models. Therefore, we propose
a novel, more realistic scenario, with which we experimentally highlight the limita-
tions of state-of-the-art methods. Finally, we introduce a new method for continual
learning of generative models based on the constant consolidation of VAE’s latent

147

space. To our knowledge, this is the first work that experimentally shows that with
continually growing data with even partially similar distribution, we can observe
both forward and backward performance improvement. Our experiments on vari-
ous benchmarks and with real-life data show the superiority of Multiband VAE over
related methods, with upper-bound performance in some training scenarios.

148

9.6. Appendix

In this supplementary material we present extended visualisations of the exper-
iments with Multiband VAE, as well as the implementation details for our models.
Finally, we show additional generations sampled from our generative model trained
in the continual learning scenarios with the complex datasets such as combined
MNIST → FashionMNIST and CelebA.

9.6.1. Discussion on the task index usage in generative continual learning

Access to the task number in continual learning of discriminative models simpli-
fies the problem. It is mostly used when taking crucial decisions such as selecting
the relevant part of the model for inference, or the final classification decision. In
such cases, a need for task code greatly undermines the universality of a solution.

Contrary to the discriminative models, in generative case conditioning genera-
tion on task index does not influence or simplify the evaluation setting. The goal
of a continually learned generative model is to generate an instance modelled on
examples from any of the previous batches. Hence, to use a continually learned
generative model in practice, we can randomly sample a task index (provided that
it is lower than the total number of seen tasks) the same way we randomly sample
input noise to the decoder or generator. In fact, training generative models with
task index significantly simplifies a class incremental scenario, in which data dis-
tributions from separate tasks – with different classes are easily distinguishable
from each other. In such case task index serves as an additional conditioning input
imperceptibly leading to the conditional generative model. This limits the univer-
sality of proposed generative continual learning method.

9.6.2. Models architectures

In this section, we describe in detail the architectures of VAE used in our exper-
iments. The same models and hyperparameters can be found in the codebase 2.

Fully connected Variational Autoencoder For comparison with other methods
we propose a simple VAE architecture with 9 fully connected layers which we use
with simpler datasets: MNIST, Omniglot, FashionMNIST, CERN and combined
datasets MNIST → FashionMNIST and FashionMNIST → MNIST.

In the encoder, we use three fully connected layers transforming input of 784
values through 512, 128 to 64 neurons. Afterwards, we map encoded images into
continuous and binary latent spaces. For MNIST we use continuous latent space of

2 https://github.com/KamilDeja/multiband_vae

149

https://github.com/KamilDeja/multiband_vae

(a) Original data (b) Generated simulations

Figure 9.6.1. Original simulations for Zero Degree Calorimeter responses and genera-
tions from our Multiband VAE trained in the class incremental scenario on CERN dataset
(in logarithmic scale). We split original dataset into 5 tasks (each row of visualisation)
with increasing energy of input particle. This results in continuously scaled size of the ob-
served showers with partial overlapping between tasks. Multiband VAE well consolidates
knowledge generating various outputs with full energy spectrum. Although because of the
logarithmic scale generated examples seems blurred, this is of the low importance because
of the extremely low values of darker/purple pixels.

size 8 and additional binary latent with size 4. For FashionMNIST and Omniglot
we extend it to 12 continuous and 4 binary values.

The translator network takes three separate inputs: continuous encodings, bi-
nary encodings, and binary codes representing task number. We first process both
binary inputs separately through two fully connected layers of 18 and 12 values for
task codes and 8 and 12 neurons for binary encodings. Afterwards, we concatenate
those three inputs: continuous noise from the encoder and two preprocessed binary
encodings into a vector of size 32 for MNIST and 36 for Omniglot and FashionM-
NIST. We further process these values through two fully connected layers of 192
and 384 neurons which is the size of the second latent space z

Our decoder consists of 3 fully connected layers with 512, 1024, and final 784
values. In each hidden layer of the model (except for the outputs of the encoder and
translator) we use a LeakyRelu activation and sigmoid for the final one.

Convolutional VAE Our Multiband VAE is not restricted to any particular archi-
tecture, therefore we also include experiments with a convolutional version of our
model. In this setup, for the encoder, we use 3 convolutional layers with 32, filers
each of 4×4 kernel size and 2×2 stride. After that, we encode the resulting feature
map of 288 features into the latent spaces of the same sizes as in the fully connected

150

model. For the translator network, we use a similar multilayered perceptron as in
the fully connected model, however, we extend the dimensionality of latent space z
to 512.

In the decoder, we use one fully connected layer that maps the output of the
translator with 512 values into 2048 features. Those are propagated through 3
transposed convolution layers with 128, 64 and 32 filters of 4×4 kernel size and
2×2, 2×2, and 1×1 stride. The final transposed convolution layer translates filters
into the final output with 4×4 kernel.

For the CelebA dataset, we extend our convolutional model. In the encoder, we
use four convolutional layers with 50, 100, and 200 filters with 5× 5 kernel size,
followed by fully connected layer mapping 1800 features, through the layer of 200
neurons into the latent space of 32 neurons and binary latent space of 8 neurons.
In the translator, we extend the fully connected combined layers into 800 and 1600
features which is a dimensionality of latent space Z. Our decoder decodes 1600
features from latent space through 3 transposed convolution layers with 400, 200,
and 100 filters into the final output with 3 channels.

As in the fully connected model, we use LeakyReLU activations and additional
batch normalization after each convolutional layer.

Training hyperparameters We train our models with the Adam optimiser, learn-
ing rate 0.001 and exponential scheduler with scheduler rate equal to 0.98. In our
experiments, we train our model for 70 epochs of local training and 140 epochs
of global training, with 5 epochs of shared knowledge discovery. We combine each
mini-batch of original data examples with generations from previous tasks reaching
up to:
mini_batch_size×num_tasks×0.5 samples per mini batch.

For the splits according to the Dirichlet distribution we substitute target gener-
ations with cosine similarity greater then 0.95. For class incremental scenario we
set this parameter to 1. Nevertheless, our experiments indicate that lowering this
value to 0.9 does not influence model’s performance.

9.6.3. Real life CERN dataset

In this work we evaluate different continual learning generative methods with
real-life example of particle collisions simulation dataset. For that end we use data
introduced in Deja et al. (2020) that consists of 117 817 Zero Degree Calorimeter re-
sponses to colliding particles, calculated with the full GEANT4 Incerti et al. (2018)
simulation tool. Each simulation starts with a single particle with a given prop-
erties (such as momenta, type or energy) propagated through the detector with

151

simulation tool that calculates interaction of a particle with detector’s matter. In
case of calorimiters, the final output of those interactions is a total energy deposited
in calorimeter’s fibres. In case of Zero Degree Calorimeter at ALICE, those fibres
are arranged in a grid with 44×44 size. To simulate continual learning scenario, we
divided input data into 5 tasks according to the input particle’s energy as presented
in Fig 9.6.1. Such split simulates changing conditions inside the LHC, where energy
of collided beams changes between different periods of data gathering.

9.6.4. Two latents Variational Autoencoder

In the global part of our training, we rely on the regularisation of VAE’s latent
space. In practice, when encoding examples from distinct classes into the same la-
tent space of VAE, we can observe that some latent variables are used to distinguish
encoded class, and therefore they do not follow desired continuous distribution as
observed by Tomczak and Welling (2018) and Mathieu et al. (2018). The extended
experimental analysis of this phenomenon can be found in the supplementary ma-
terial.

Therefore, in this work, we propose a simple disentanglement method with an
additional binary latent space that addresses this problem, similar to the one in-
troduced in Ramapuram et al. (2020). To that end, we train our encoder to encode
input data characteristics into a set of continuous variables µc and binary variables
µb, which are used to sample vectors λc and λb that together form λ – the input
to the translator model. For the continuous variables, we follow the reparameter-
isation trick introduced by Kingma and Welling (2014). To sample vector λc, we
train our encoder to generate two vectors: means µm and standard deviations µσ.

Those vectors are used as parameters of Normal distribution from which we sam-
ple λc ∼ N(µm,diag(µ2

σ)). For binary variables, we introduce a similar procedure
based on the Gumbel softmax by Jang et al. (2016) approximation of sampling from
Bernoulli distribution. Therefore, we train our encoder to produce probabilities µp

with which we sample binary vectors Lb ∼ B(µp). To allow generations of new data
examples, for continuous values, we regularise our encoder to generate vectors λc

from the standard normal distribution N(0, I) with a Kullback-Leibler divergence.
For binary vectors λb, during inference, we approximate probabilities µ′

p with the
average of probabilities µp for all of the examples in the train-set. We calculate µ′

p

during the last epoch of the local training. Therefore, to generate new data examples
we sample random continuous variables λc ∼N(0, I) and binary variables λb ∼ B(µ′

p)

and propagate them through the translator and global decoder.

152

9.6.5. Analysis of binary latent space

When training Variational Autoencoder with complex data distributions such
as a combination of several classes, we can observe that some of the variables in
the latent space do not follow desired distribution (e.g. N(0,1)), but instead they
are used to separate latent space into different parts. In this section, we explain
this behaviour on the basis of a simple example, with VAE trained on two classes
from the MNIST dataset: zeros and ones. For that purpose, we analyse the latent
space of the model. In Fig 9.6.5 we present distribution of continuous variables
when encoding examples from separate classes. As visible, two variables (1 and
2) do not follow the standard normal distribution to which they were regularised.
Instead, they are used to differentiate examples from different classes. Therefore,
for certain sampled values, e.g. with variable 2 around 0, the model generates
examples that are in between two classes as presented in Fig. 9.6.4. With generative
replay, this problem is even more profound, since rehearsal procedure leads to error
accumulation.

In this work, we propose a simple disentanglement mechanism. In the process
of data encoding, we use an additional binary latent space to which the encoder
can map categorical features of the input data such as distinctive classes. This
simplifies encoding in standard continuous latent space in which our model does
not have to separate examples from different parts of the original distribution. For
comparison with standard VAE, we extended the previous model with an additional
binary latent space of four binary variables. After training with the same subset of
the MNIST dataset of zeros and ones, we observe that model encodes information
about classes in the first binary variable as presented in Fig. 9.6.2. With such binary
codes, our autoencoder does not have to separate classes in the continuous latent
space, which leads to better alignment to the normal distribution as presented in
Fig. 9.6.6. In Fig. 9.6.3 we show sampled generations from our disentangled rep-
resentation with two latent spaces. Samples in the same column share the same
continuous noise, while those in the same row have the same binary vector. Visu-
alisation indicates that continuous features such as digit’s width or rotation are
shared between different binary features (column-wise), while for the same binary
features (row-wise) we have only examples from the same class.

9.6.6. Visualisation of generated samples

In this section, we present additional generations from Multiband VAE. Fig. 9.6.7
shows generations from combined datasets MNIST → FashionMNIST and Fashion-
MNIST → MNIST. Our model does not suffer from catastrophic forgetting, so pre-

153

Figure 9.6.2. Binary latent space distribution of Variational Autoencoder. Sampled values
for examples from encodings of class zero (top) and one (bottom). Additional binary latent
space allows for simpler classes separation mostly through the first binary value for which
all of the zero examples are encoded with different value than for ones.

vious generations retain their good quality even when retrained with data samples
from an entirely different dataset. Moreover, it is able to identify common features
between datasets, such as the thickness of generated instances or their general
shape. To visualise this behaviour we generate samples from the same instance of
random continuous noise (column-wise) but conditioned on different task number.

In Fig. 9.6.8a we present one more example of how our knowledge consolidation
works in practice on a standard benchmark. In most cases the quality of new gener-
ations from the model retrained on top of the current global models is better than
the previous one. Additionally, for some tasks, we can observe backward knowledge
transfer in which training on the new task improves generations from the previous
ones.

Finally in Fig. 9.6.8b we present generations on the bigger CelebA dataset. Al-
though generations do not match those obtained from state of the art big generative
models this is mainly because of the fact that we based our experiments on a shal-
low model similar to those used in the other approaches (VCL, hypercl, CURL) and
other generative autoencoders (WAE, SAE, SWAE). Not to overshadow the main
contribution, we did not use additional techniques such as deep models, Laplacian
pyramid, or adversarial loss, which would improve the quality of generated samples
independently from the training setup.

154

Figure 9.6.3. Examples of generations from Variational Autoencoder with binary latent
space, for the same random continuous noise (per column) but opposite values for first bi-
nary variable. As visible our model well disentangles classes through binary latent space,
while continuous values are still used to encode inter-class continuous features such as
thickness or rotation.

Figure 9.6.4. Examples of generations from Variational Autoencoder with no binary latent
space, with variables 1 and 2 set to 0. Since model use those variables for class separation,
resulting generations with sampled values around 0 are between two classes.

Figure 9.6.5. Latent space distribution of Variational Autoencoder trained with two sep-
arate classes. Noise embeddings for examples from class zero (top) and one (bottom). Two
variables (1 and 2), do not follow standard normal distribution, but are used to differentiate
examples from different classes.

Figure 9.6.6. Latent space distribution of Variational Autoencoder with additional binary
latent space trained with two separate classes. Noise embeddings for examples from class
zero (top) and one (bottom). Thanks to the additional binary latent space, continual vari-
ables are better aligned to the standard normal distribution.

(a) MNIST → FashionMNIST (b) FashionMNIST → MNIST

Figure 9.6.7. Images generated by our Multiband VAE trained in the class incremental sce-
nario on combined datasets MNIST → FashionMNIST (left) and FashionMNIST → MNIST
(right). We generate images with the same continuous noise per column. Thanks to the
proposed band arrangement procedure, we can see that even when trained on drastically
different distribution our model adjusts data encodings from various tasks so that they
share some common features. For example, in the first column of generations from Fash-
ionMNIST → MNIST we can observe how generations of thick black clothes correspond to
the firm and bold instances of handwritten digits.

156

(a) (b)

Figure 9.6.8. FID↓ of generations from a given task of the CelebA dataset, after retraining
with number of following tasks for Dirichlet α= 1 scenario (left). Our Multiband VAE well
consolidates knowledge with forward and backward knowledge transfer to generations from
previous tasks when presented with new similar examples. Images generated by Multiband
VAE (right) in the class incremental scenario for CelebA dataset. In the following tasks we
introduce images with different hair features. In the first task we introduce photographs of
people with black hair, followed by blondes, hats and brown hair. In the final task we train
the model with bald and white haired people. In this visualisation we present samples with
the same random continuous noise (per column) but different task index. We can observe
that our Multiband VAE does not suffer from catastrophic forgetting.

157

10. Discussion and Final Remarks

10.1. Future Outlook of Generative Artificial

Intelligence

This thesis was written at the emergence of the Large Language Models (LLM) –
a new family of generative methods that have the potential to affect machine learn-
ing research significantly. Methods such as GPT-4 (OpenAI, 2023) or LLaMA (Tou-
vron et al., 2023) have already shown that thanks to the generative modelling in
a text domain, neural networks can properly encode not only the syntax of the lan-
guage but also the underlying information that can be structured into knowledge.
Therefore, recent systems based on those techniques, can solve complex tasks with
performance comparable to humans Kojima et al. (2022). However as summarised
by Mialon et al. (2023), there are still several limitations of LLMs such as lack
of proper reasoning that is related to their statistical nature. Nevertheless, there
are already several attempts to improve that capabilities (Creswell and Shanahan,
2022). Hence, it seems evident that generative modelling is becoming a key aspect
of Machine Learning systems as a general method for learning and encoding knowl-
edge in an unsupervised manner.

Although we have not tackled the problem of generating text in this work, we be-
lieve that the example set by LLMs will shortly proliferate to other modalities. This
directly leads to the question that, in our opinion, will guide the future research in
generative modelling: Can we use generative models as a focal point of any machine
learning system to represent the knowledge about the world?

We presume that this general question will be evaluated in detail by numerous
researchers in the field, as we already see a growing number of methods following
this path (Dorner et al., 2022; Wu et al., 2023; Kwon et al., 2023).

10.2. Open Questions

In this thesis, we focused on one particular aspect of generative modelling: the
nature of the internal latent representations created and used by those methods.

158

In the previous chapters, we discussed their possible structures, applications and
performance in a continual learning setup. Our considerations have shed some
light on the above-mentioned aspects. However, there are several straightforward
questions that will guide our future research. We briefly overview them in this
section.

Can we use generative model to align data representations useful for other
Continual Learning tasks? In Chapter 9, we introduced Multiband VAE – a
method for continual knowledge consolidation in variational autoencoder’s latent
space. We showed that our model can distinguish data representations from dif-
ferent tasks while aligning similar examples arriving to the model in a continuous
stream. In this work, we focused on generative modelling and showed how we can
train a VAE to continually learn the training data distribution. As future work, we
will extend this idea to other ML tasks. In particular, we postulate to place the
Multiband VAE in a focal point of a continually trained system – to align repre-
sentations of data arriving to the model in consecutive tasks. With such structure,
we will use the aligned representations in different problems such as classification,
image segmentation or semi-supervised learning.

Can we benefit from data representations created by DDGMs in the
continual learning setup? The exceptional performance of Deep Diffusion Gen-
erative Models can be attributed, in part, to their stable training process, which
relies on large-scale datasets. Notably, the DALL-E 2 model was trained on a
dataset of approximately 650 million images (Ramesh et al., 2022), and as reported
by Dayma et al. (2021), the open-source implementation of this approach required
56 days of training using TPU c4 hardware. Such computational resources are of-
ten not readily available to academic institutions, smaller businesses, and indepen-
dent researchers, limiting the accessibility of these models. Therefore, reducing
the computational burden of diffusion models is critical to democratise their use.
One promising approach to address this challenge is to leverage previously trained
models and continually update them with incoming data. However, DDGMs can
also suffer from catastrophic forgetting when retrained with additional data. In
particular, in our preliminary work Zajac et al. (2023), we highlighted the potential
challenges in continual learning of those methods. In our future research, we will
continue this investigation by exploring the potential of DDGMs for learning useful
data representations in a CL setup.

How can we further use the representations from DDGMs? In Chapter 6,
we presented how we can benefit from data representations learned by a DDGM for

159

a classification task. We showed that we can improve the performance of a model
over separate parameterisations by learning a joint neural network on both data
distribution p(x) and the marginal distribution over classes p(y|x). While classifi-
cation is probably one of the most common tasks in Machine Learning, numerous
other applications might benefit from the robust data representations encoded in
the decoder’s latent space. Moreover, the initial experiments showed that the diffu-
sion process disentangles the data representation based on their granularity. This
property might be useful for image segmentation or semi-supervised learning tasks.
Moreover, as a part of our method, we introduced an algorithm for counterfactual
examples generations that provides partial explainability for the decisions made
by a classifier. In some domains, such as medical studies, there is a great need
to provide a justification or reasoning behind machine learning solutions. Joint
modelling might be a helpful building block for such applications.

Can we use the diffusion process to directly learn meaningful
representations? One of the essential limitations of the DDGMs is the lack of
the encoder that maps the original data into low-dimensional representations. In
our studies, we investigated two approaches to formulating data representations in
the DDGMs, either as the intermediate steps of the diffusion process or in the latent
space of the denoising model. Several recent works follow a similar idea of extract-
ing data representations from a pre-trained model (Baranchuk et al., 2021) or by
creating additional structures (Abstreiter et al., 2021). The remaining question is
how to modify the diffusion process to allow for the implicit encoding-decoding pro-
cess. The possible solution to this problem might be based on the work by Bansal
et al. (2022), where authors introduced a diffusion process with arbitrary opera-
tions. One can imagine an operator that gradually distorts the input to the proper
representation while reducing its dimensionality at the same time.

10.3. Conclusion

In this thesis, we presented an analysis of generative models from the perspec-
tive of data representations. Although this aspect of generative modelling is often
marginalised as most applications focus on the property of sampling from the ap-
proximated training data distribution, we postulated that representations encoded
by different generative models are robust and may be used in different downstream
tasks. With a series of publications we discussed different aspects of this topic.
We first analysed how different generative autoencoders and Diffusion-Based Deep
Generative models encode input data into latent representations. Then, we pre-

160

sented a use case where representations from DDGM were used to improve the
performance of a classifier through joint modelling. We also extended this analysis
to semi-supervised learning or domain adaptation tasks. Finally, we showed that
data representations from generative models might play an important role in con-
tinual learning, either as a practical method for the efficient storage of past data
examples or an effective way for continuous knowledge consolidation.

161

Bibliography

Aamodt, K., Quintana, A. A., Achenbach, R., Acounis, S., Adamová, D., Adler, C.,
Aggarwal, M., Agnese, F., Rinella, G. A., Ahammed, Z., et al. (2008). The alice
experiment at the cern lhc. Journal of Instrumentation, 3(08):S08002.

Abstreiter, K., Mittal, S., Bauer, S., Schölkopf, B., and Mehrjou, A. (2021).
Diffusion-based representation learning. arXiv preprint arXiv: Arxiv-2105.14257.

Achille, A., Eccles, T., Matthey, L., Burgess, C., Watters, N., Lerchner, A., and Hig-
gins, I. (2018). Life-long disentangled representation learning with cross-domain
latent homologies. Advances in Neural Information Processing Systems, 31.

Ahn, H., Cha, S., Lee, D., and Moon, T. (2019). Uncertainty-based continual learn-
ing with adaptive regularization. Advances in Neural Information Processing
Systems, 32.

Ahn, H., Kwak, J., Lim, S., Bang, H., Kim, H., and Moon, T. (2021). Ss-il: Separated
softmax for incremental learning. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 844–853.

Alain, G. and Bengio, Y. (2014). What regularized auto-encoders learn from
the data-generating distribution. The Journal of Machine Learning Research,
15(1):3563–3593.

Aljundi, R., Babiloni, F., Elhoseiny, M., Rohrbach, M., and Tuytelaars, T. (2018).
Memory aware synapses: Learning what (not) to forget. In Proceedings of the
European Conference on Computer Vision (ECCV), pages 139–154.

Aljundi, R., Belilovsky, E., Tuytelaars, T., Charlin, L., Caccia, M., Lin, M., and
Page-Caccia, L. (2019). Online Continual Learning with Maximally Interfered
Retrieval. In Advances in Neural Information Processing Systems.

Aljundi, R., Chakravarty, P., and Tuytelaars, T. (2017). Expert gate: Lifelong learn-
ing with a network of experts. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 3366–3375.

Arjovsky, M., Chintala, S., and Bottou, L. (2017). Wasserstein gan. International
Conference on Machine Learning.

Arora, S., Ge, R., Liang, Y., Ma, T., and Zhang, Y. (2017). Generalization and equi-
librium in generative adversarial nets (gans). In Proceedings of the 34th Interna-
tional Conference on Machine Learning, pages 224–232. JMLR. org.

Arora, S. and Zhang, Y. (2017). Do gans actually learn the distribution? an empiri-

cal study. arXiv preprint arXiv:1706.08224.
Augustin, M., Boreiko, V., Croce, F., and Hein, M. (2022). Diffusion visual counter-

factual explanations. Advances in Neural Information Processing Systems.
Ayinde, B. O., Inanc, T., and Zurada, J. M. (2019). Regularizing deep neural net-

works by enhancing diversity in feature extraction. IEEE transactions on neural
networks and learning systems, 30(9):2650–2661.

Bansal, A., Borgnia, E., Chu, H.-M., Li, J. S., Kazemi, H., Huang, F., Goldblum, M.,
Geiping, J., and Goldstein, T. (2022). Cold diffusion: Inverting arbitrary image
transforms without noise.

Baranchuk, D., Rubachev, I., Voynov, A., Khrulkov, V., and Babenko, A. (2021).
Label-efficient semantic segmentation with diffusion models. International Con-
ference on Learning Representations.

Bau, D., Zhu, J.-Y., Wulff, J., Peebles, W., Strobelt, H., Zhou, B., and Torralba, A.
(2019). Seeing what a gan cannot generate. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 4502–4511.

Bayes, T. (1763). Lii. an essay towards solving a problem in the doctrine of chances.
by the late rev. mr. bayes, frs communicated by mr. price, in a letter to john canton,
amfr s. Philosophical transactions of the Royal Society of London, pages 370–418.

Belouadah, E. and Popescu, A. (2019). Il2m: Class incremental learning with dual
memory. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pages 583–592.

Bengio, Y., Yao, L., Alain, G., and Vincent, P. (2013). Generalized denoising
auto-encoders as generative models. Advances in Neural Information Processing
Systems, 26.

Benny, Y. and Wolf, L. (2022). Dynamic dual-output diffusion models. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 11482–11491.

Bińkowski, M., Sutherland, D. J., Arbel, M., and Gretton, A. (2018). Demystifying
mmd gans. International Conference on Learning Representations.

Blaschke, T., Olivecrona, M., Engkvist, O., Bajorath, J., and Chen, H. (2018). Ap-
plication of generative autoencoder in de novo molecular design. Molecular infor-
matics, 37(1-2):1700123.

Bojanowski, P., Joulin, A., Lopez-Paz, D., and Szlam, A. (2017). Optimizing the
latent space of generative networks. International Conference on Machine Learn-
ing.

Brock, A., Donahue, J., and Simonyan, K. (2018). Large scale gan training for high
fidelity natural image synthesis. International Conference on Learning Represen-
tations.

163

Brown, R. (1828). A brief account of microscopical observations made in the months
of june, july and august 1827, on the particles contained in the pollen of plants;
and on the general existence of active molecules in organic and inorganic bodies.
The Philosophical Magazine, 4(21):161–173.

Burgess, C. P., Matthey, L., Watters, N., Kabra, R., Higgins, I., Botvinick, M., and
Lerchner, A. (2019). Monet: Unsupervised scene decomposition and representa-
tion. arxiv.org.

Caccia, L., Belilovsky, E., Caccia, M., and Pineau, J. (2020). Online Learned Con-
tinual Compression with Adaptive Quantization Modules. In Proceedings of the
37th International Conference on Machine Learning.

Carreira-Perpinan, M. A. and Raziperchikolaei, R. (2015). Hashing with Binary
Autoencoders. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition.

Chadebec, C., Vincent, L., and Allassonniere, S. (2022). Pythae: Unifying genera-
tive autoencoders in python - a benchmarking use case. In Koyejo, S., Mohamed,
S., Agarwal, A., Belgrave, D., Cho, K., and Oh, A., editors, Advances in Neural
Information Processing Systems, volume 35, pages 21575–21589. Curran Asso-
ciates, Inc.

Chan, C. H., Qian, K., Zhang, Y., and Hasegawa-Johnson, M. (2022). Speechsplit
2.0: Unsupervised speech disentanglement for voice conversion without tuning
autoencoder bottlenecks. Ieee International Conference On Acoustics, Speech, And
Signal Processing.

Chandra, B. and Sharma, R. K. (2014). Adaptive noise schedule for denoising au-
toencoder. In International conference on neural information processing, pages
535–542. Springer.

Chapelle, O., Scholkopf, B., and Zien, A. (2009). Semi-supervised learning (chapelle,
o. et al., eds.; 2006)[book reviews]. IEEE Transactions on Neural Networks,
20(3):542–542.

Chaudhry, A., Rohrbach, M., Elhoseiny, M., Ajanthan, T., Dokania, P. K., Torr, P.
H. S., and Ranzato, M. (2019). Continual Learning with Tiny Episodic Memories.
In Multi-Task and Lifelong Reinforcement Learning, Workshop at ICML.

Chen, M., Weinberger, K., Sha, F., and Bengio, Y. (2014). Marginalized denoising
auto-encoders for nonlinear representations. In International Conference on Ma-
chine Learning, pages 1476–1484. PMLR.

Chen, R. T., Behrmann, J., Duvenaud, D., and Jacobsen, J.-H. (2019). Residual
flows for invertible generative modeling. arXiv preprint arXiv:1906.02735.

Cheung, B., Terekhov, A., Chen, Y., Agrawal, P., and Olshausen, B. (2019). Super-
position of many models into one. In Advances in Neural Information Processing

164

Systems.
Child, R. (2021). Very deep vaes generalize autoregressive models and can outper-

form them on images. In International Conference on Learning Representations.
Chung, Y.-A., Wu, C.-C., Shen, C.-H., Lee, H.-Y., and Lee, L.-S. (2016). Au-

dio word2vec: Unsupervised learning of audio segment representations using
sequence-to-sequence autoencoder. Interspeech 2016, pages 765–769.

Cognigni, P., Felsenberg, J., and Waddell, S. (2018). Do the right thing: neural
network mechanisms of memory formation, expression and update in drosophila.
Current opinion in neurobiology, 49:51–58.

Colomb, J., Kaiser, L., Chabaud, M.-A., and Preat, T. (2009). Parametric and genetic
analysis of drosophila appetitive long-term memory and sugar motivation. Genes,
Brain and Behavior, 8(4):407–415.

Cresswell, J. C., Ross, B. L., Loaiza-Ganem, G., Reyes-Gonzalez, H., Letizia, M.,
and Caterini, A. L. (2022). Caloman: Fast generation of calorimeter showers
with density estimation on learned manifolds. arXiv preprint arXiv:2211.15380.

Creswell, A. and Bharath, A. A. (2018). Inverting the generator of a generative
adversarial network. IEEE transactions on neural networks and learning systems,
30(7):1967–1974.

Creswell, A. and Shanahan, M. (2022). Faithful reasoning using large language
models. arXiv preprint arXiv:2208.14271.

Cuturi, M. (2013). Sinkhorn distances: Lightspeed computation of optimal trans-
port. In Advances in Neural Information Processing Systems, pages 2292–2300.

Dai, B. and Wipf, D. (2019). Diagnosing and enhancing vae models. arXiv preprint
arXiv:1903.05789.

Dayma, B., Patil, S., Cuenca, P., Saifullah, K., Abraham, T., Lê Khac, P., Melas, L.,
and Ghosh, R. (2021). Dalle mini.

Deja, K., Dubiński, J., Nowak, P., Wenzel, S., Spurek, P., and Trzcinski, T.
(2020). End-to-end sinkhorn autoencoder with noise generator. IEEE Access,
9:7211–7219.

Deja, K., Kuzina, A., Trzcinski, T., and Tomczak, J. (2022a). On analyzing gener-
ative and denoising capabilities of diffusion-based deep generative models. Ad-
vances in Neural Information Processing Systems, 35:26218–26229.

Deja, K., Trzciński, T., Graczykowski, Ł., Collaboration, A., et al. (2018). Generative
models for fast cluster simulations in the tpc for the alice experiment. In Confer-
ence on Information Technology, Systems Research and Computational Physics,
pages 267–280. Springer.

Deja, K., Trzcinski, T., and Tomczak, J. M. (2023). Learning data representations
with joint diffusion models. arXiv preprint arXiv:2301.13622.

165

Deja, K., Wawrzyński, P., Marczak, D., Masarczyk, W., and Trzciński, T. (2021).
Binplay: A binary latent autoencoder for generative replay continual learning.
In 2021 International Joint Conference on Neural Networks (IJCNN), pages 1–8.
IEEE.

Deja, K., Wawrzyski, P., Masarczyk, W., Marczak, D., and Trzciski, T. (2022b).
Multiband vae: Latent space alignment for knowledge consolidation in continual
learning. In Raedt, L. D., editor, Proceedings of the Thirty-First International
Joint Conference on Artificial Intelligence, IJCAI-22, pages 2902–2908. Interna-
tional Joint Conferences on Artificial Intelligence Organization. Main Track.

Deja, K. R. (2019). Using machine learning techniques for data quality monitoring
in cms and alice experiments. PoS, page 236.

Dellacasa, G., Zhu, X., Wahn, M., Staley, F., Danielian, V., Karavicheva, T.,
Mikhalev, D., Carrer, N., Gheata, M., Stefanek, G., et al. (1999). Alice technical
design report of the zero degree calorimeter (zdc). Technical report, ALICE.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2019). Bert: Pre-training of
deep bidirectional transformers for language understanding. NAACL.

Dhariwal, P. and Nichol, A. (2021). Diffusion models beat GANs on image synthesis.
Advances in Neural Information Processing Systems, 34.

Di Sipio, R., Giannelli, M. F., Haghighat, S. K., and Palazzo, S. (2019). Dijetgan: a
generative-adversarial network approach for the simulation of qcd dijet events at
the lhc. Journal of high energy physics, 2019(8).

Ding, D., Hill, F., Santoro, A., Reynolds, M., and Botvinick, M. (2021). Attention
over learned object embeddings enables complex visual reasoning. Advances in
Neural Information Processing Systems, 34:9112–9124.

Ding, J., Condon, A., and Shah, S. P. (2018). Interpretable dimensionality reduction
of single cell transcriptome data with deep generative models. Nature communi-
cations, 9(1):2002.

Dorner, F. E., Peychev, M., Konstantinov, N., Goel, N., Ash, E., and Vechev, M.
(2022). Human-guided fair classification for natural language processing. arXiv
preprint arXiv:2212.10154.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner,
T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., and Houlsby,
N. (2020). An image is worth 16x16 words: Transformers for image recognition
at scale. International Conference on Learning Representations.

Du, Y. and Mordatch, I. (2019). Implicit generation and generalization in
energy-based models. arXiv preprint arXiv:1903.08689.

Dudai, Y., Sher, B., Segal, D., and Yovell, Y. (1985). Defective responsiveness of
adenylate cyclase to forskolin in the drosophila memory mutant rutabaga. Jour-

166

nal of neurogenetics, 2(6):365–380.
Ebrahimi, S., Elhoseiny, M., Darrell, T., and Rohrbach, M. (2019).

Uncertainty-guided continual learning in bayesian neural networks. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops, pages 75–78.

Egorov, E., Kuzina, A., and Burnaev, E. (2021). Boovae: Boosting approach for
continual learning of vae. Advances in Neural Information Processing Systems,
34.

Erdmann, M., Glombitza, J., and Quast, T. (2019). Precise simulation of electromag-
netic calorimeter showers using a wasserstein generative adversarial network.
Computing and Software for Big Science, 3:1–13.

Esser, P., Sutter, E., and Ommer, B. (2018). A variational u-net for conditional
appearance and shape generation. Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition.

Evans, L. and Bryant, P. (2008a). Lhc machine. Journal of instrumentation,
3(08):S08001.

Evans, L. and Bryant, P. (2008b). LHC Machine. JINST, 3:S08001.
Falck, F., Williams, C., Danks, D., Deligiannidis, G., Yau, C., Holmes, C. C., Doucet,

A., and Willetts, M. (2022). A multi-resolution framework for u-nets with appli-
cations to hierarchical VAEs. In Oh, A. H., Agarwal, A., Belgrave, D., and Cho,
K., editors, Advances in Neural Information Processing Systems.

Feydy, J., Séjourné, T., Vialard, F.-X., Amari, S.-i., Trouve, A., and Peyré, G. (2019).
Interpolating between optimal transport and mmd using sinkhorn divergences.
In The 22nd International Conference on Artificial Intelligence and Statistics,
pages 2681–2690.

French, R. M. (1999). Catastrophic forgetting in connectionist networks. Trends in
cognitive sciences.

Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle, H., Laviolette, F.,
Marchand, M., and Lempitsky, V. (2016). Domain-adversarial training of neural
networks. The journal of machine learning research, 17(1):2096–2030.

Genevay, A., Chizat, L., Bach, F., Cuturi, M., and Peyré, G. (2018). Sample complex-
ity of sinkhorn divergences. arXiv preprint arXiv:1810.02733.

Genevay, A., Peyré, G., and Cuturi, M. (2017). Learning generative models with
sinkhorn divergences. arXiv preprint arXiv:1706.00292.

Geras, K. J. and Sutton, C. (2014). Scheduled denoising autoencoders. arXiv
preprint arXiv:1406.3269.

Giannelli, M. F., Kasieczka, G., Krause, C., Nachman, B., Salamani, D., Shih, D.,
and Zaborowska, A. (2022). Fast calorimeter simulation challenge.

167

Golkar, S., Kagan, M., and Cho, K. (2019). Continual Learning via Neural Pruning.
In Neuro AI. Workshop at NeurIPS.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,
Courville, A., and Bengio, Y. (2014a). Generative adversarial nets. In Advances
in Neural Information Processing Systems, pages 2672–2680.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,
Courville, A., and Bengio, Y. (2014b). Generative Adversarial Networks. In Ad-
vances in Neural Information Processing Systems.

Grathwohl, W., Wang, K.-C., Jacobsen, J., Duvenaud, D., Norouzi, M., and Swersky,
K. (2019a). Your classifier is secretly an energy based model and you should treat
it like one. International Conference on Learning Representations.

Grathwohl, W., Wang, K.-C., Jacobsen, J.-H., Duvenaud, D., Norouzi, M., and Swer-
sky, K. (2019b). Your classifier is secretly an energy based model and you should
treat it like one. In International Conference on Learning Representations.

Grathwohl, W. S., Kelly, J. J., Hashemi, M., Norouzi, M., Swersky, K., and Du-
venaud, D. (2021). No {mcmc} for me: Amortized sampling for fast and stable
training of energy-based models. In International Conference on Learning Repre-
sentations.

Gretton, A., Borgwardt, K. M., Rasch, M. J., Schölkopf, B., and Smola, A. (2012). A
kernel two-sample test. Journal of Machine Learning Research, 13(25):723–773.

Gu, S., Chen, D., Bao, J., Wen, F., Zhang, B., Chen, D., Yuan, L., and Guo, B. (2021).
Vector quantized diffusion model for text-to-image synthesis. Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition.

Gupta, A., Müller, A. T., Huisman, B. J., Fuchs, J. A., Schneider, P., and Schneider,
G. (2018). Generative recurrent networks for de novo drug design. Molecular
informatics, 37(1-2):1700111.

Hadsell, R., Rao, D., Rusu, A. A., and Pascanu, R. (2020). Embracing change:
Continual learning in deep neural networks. Trends in cognitive sciences,
24(12):1028–1040.

Hayes, T. L., Krishnan, G. P., Bazhenov, M., Siegelmann, H. T., Sejnowski, T. J.,
and Kanan, C. (2021). Replay in deep learning: Current approaches and missing
biological elements. Neural computation, 33(11):2908–2950.

He, X., Liao, L., Zhang, H., Nie, L., Hu, X., and Chua, T.-S. (2017). Neural Collabo-
rative Filtering. In WWW.

Hebb, D. O. (1949). The organization of behavior: A neuropsychological theory. John
Wiley & Sons.

Hendrycks, D. and Gimpel, K. (2017). A Baseline for Detecting Misclassified and
Out-of-Distribution Examples in Neural Networks. In International Conference

168

on Learning Representations.
Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., and Hochreiter, S. (2017).

Gans trained by a two time-scale update rule converge to a local nash equilibrium.
Advances in Neural Information Processing Systems, 30.

Higgins, I., Matthey, L., Pal, A., Burgess, C., Glorot, X., Botvinick, M., Mohamed,
S., and Lerchner, A. (2017). beta-vae: Learning basic visual concepts with a con-
strained variational framework. In International Conference on Learning Repre-
sentations.

Hinton, G., Vinyals, O., and Dean, J. (2015). Distilling the Knowledge in a Neural
Network. In Deep Learning and Representation Learning Workshop at NeurIPS.

Hinton, G. E., Osindero, S., and Teh, Y.-W. (2006). A fast learning algorithm for
deep belief nets. Neural computation, 18(7):1527–1554.

Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. R.
(2012). Improving neural networks by preventing co-adaptation of feature detec-
tors. arXiv preprint arXiv:1207.0580.

Ho, J., Jain, A., and Abbeel, P. (2020). Denoising diffusion probabilistic models.
Advances in Neural Information Processing Systems, 33:6840–6851.

Ho, J., Saharia, C., Chan, W., Fleet, D. J., Norouzi, M., and Salimans, T. (2022).
Cascaded diffusion models for high fidelity image generation. Journal of Machine
Learning Research, 23(47):1–33.

Ho, J. and Salimans, T. (2022). Classifier-free diffusion guidance. NeurIPS 2021
Workshop on Deep Generative Models and Downstream Applications.

Hoffman, M. D. and Johnson, M. J. (2016). Elbo surgery: yet another way to carve up
the variational evidence lower bound. In Workshop in Advances in Approximate
Bayesian Inference, NIPS, volume 1.

Howard, J. N., Mandt, S., Whiteson, D., and Yang, Y. (2022). Learning to simulate
high energy particle collisions from unlabeled data. Scientific Reports, 12(1):7567.

Hsu, T.-M. H., Qi, H., and Brown, M. (2019). Measuring the effects of
non-identical data distribution for federated visual classification. arXiv preprint
arXiv:1909.06335.

Hsu, W.-N., Zhang, Y., and Glass, J. (2017). Learning latent representations for
speech generation and transformation. Interspeech 2017.

Huang, C.-W., Lim, J. H., and Courville, A. C. (2021). A variational perspective
on diffusion-based generative models and score matching. Advances in Neural
Information Processing Systems, 34.

Huang, P. K.-M., Chen, S.-A., and Lin, H.-T. (2022). Improving conditional
score-based generation with calibrated classification and joint training. In
NeurIPS 2022 Workshop on Score-Based Methods.

169

Ilse, M., Tomczak, J. M., Louizos, C., and Welling, M. (2020). Diva: Domain invari-
ant variational autoencoders. In Medical Imaging with Deep Learning, pages
322–348. PMLR.

Incerti, S., Kyriakou, I., Bernal, M., Bordage, M., Francis, Z., Guatelli, S.,
Ivanchenko, V., Karamitros, M., Lampe, N., Lee, S. B., et al. (2018). Geant4-dna
example applications for track structure simulations in liquid water: A report
from the geant4-dna project. Medical physics, 45(8):e722–e739.

Ioffe, S. and Szegedy, C. (2015). Batch normalization: Accelerating deep network
training by reducing internal covariate shift. International Conference on Ma-
chine Learning.

Isele, D. and Cosgun, A. (2018). Selective experience replay for lifelong learning. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 32.

Jang, E., Gu, S., and Poole, B. (2016). Categorical reparameterization with
gumbel-softmax. International Conference on Learning Representations.

Jebara, T. (2012). Machine learning: discriminative and generative, volume 755.
Springer Science & Business Media.

Jin, L., Lazarow, J., and Tu, Z. (2017). Introspective classification with convolu-
tional nets. Advances in Neural Information Processing Systems, 30.

Kamra, N., Gupta, U., and Liu, Y. (2017). Deep generative dual memory network
for continual learning. arXiv preprint arXiv:1710.10368.

Kansal, R., Duarte, J., Su, H., Orzari, B., Tomei, T., Pierini, M., Touranakou, M.,
Gunopulos, D., et al. (2021). Particle cloud generation with message passing gen-
erative adversarial networks. Advances in Neural Information Processing Sys-
tems, 34.

Ke, Z., Liu, B., Ma, N., Xu, H., and Shu, L. (2021). Achieving forgetting prevention
and knowledge transfer in continual learning. Advances in Neural Information
Processing Systems, 34.

Kehoe, B., Patil, S., Abbeel, P., and Goldberg, K. (2015). A Survey of Research on
Cloud Robotics and Automation. IEEE T-ASE.

Kemker, R. and Kanan, C. (2018). Fearnet: Brain-inspired model for incremental
learning. International Conference on Learning Representations.

Khattak, G. R., Vallecorsa, S., and Carminati, F. (2018). Three dimensional energy
parametrized generative adversarial networks for electromagnetic shower simu-
lation. In 2018 25th IEEE International Conference on Image Processing (ICIP).

Kim, J., Kim, S., Kong, J., and Yoon, S. (2020). Glow-tts: A generative flow for
text-to-speech via monotonic alignment search. Advances in Neural Information
Processing Systems, 33:8067–8077.

Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization. In-

170

ternational Conference On Learning Representations.
Kingma, D. P. and Dhariwal, P. (2018). Glow: Generative flow with invertible

1x1 convolutions. In Advances in Neural Information Processing Systems, pages
10215–10224.

Kingma, D. P., Mohamed, S., Jimenez Rezende, D., and Welling, M. (2014).
Semi-supervised learning with deep generative models. Advances in Neural In-
formation Processing Systems, 27.

Kingma, D. P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., and Welling, M.
(2016). Improved variational inference with inverse autoregressive flow. Advances
in Neural Information Processing Systems, 29.

Kingma, D. P., Salimans, T., Poole, B., and Ho, J. (2021). Variational diffusion
models. In Advances in Neural Information Processing Systems.

Kingma, D. P. and Welling, M. (2014). Auto-Encoding Variational Bayes. In Inter-
national Conference on Learning Representations.

Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Desjardins, G., Rusu, A. A.,
Milan, K., Quan, J., Ramalho, T., Grabska-Barwinska, A., et al. (2017a). Over-
coming catastrophic forgetting in neural networks. Proceedings of the national
academy of sciences, 114(13):3521–3526.

Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Desjardins, G., Rusu, A. A.,
Milan, K., Quan, J., Ramalho, T., Grabska-Barwinska, A., Hassabis, D., Clopath,
C., Kumaran, D., and Hadsell, R. (2017b). Overcoming catastrophic forgetting in
neural networks. PNAS.

Knop, S., Spurek, P., Tabor, J., Podolak, I., Mazur, M., and Jastrzebski, S.
(2020). Cramer-wold auto-encoder. The Journal of Machine Learning Research,
21(1):6594–6621.

Kojima, T., Gu, S., Reid, M., Matsuo, Y., and Iwasawa, Y. (2022). Large language
models are zero-shot reasoners. Neural Information Processing Systems.

Kolouri, S., Pope, P. E., Martin, C. E., and Rohde, G. K. (2018). Sliced-wasserstein
autoencoder: An embarrassingly simple generative model. arXiv preprint
arXiv:1804.01947.

Krashes, M. J. and Waddell, S. (2008). Rapid consolidation to a radish and protein
synthesis-dependent long-term memory after single-session appetitive olfactory
conditioning in drosophila. Journal of Neuroscience, 28(12):3103–3113.

Krizhevsky, A., Hinton, G., et al. (2009). Learning multiple layers of features from
tiny images. In Citeseer.

Kwon, M., Xie, S. M., Bullard, K., and Sadigh, D. (2023). Reward design with
language models. In International Conference on Learning Representations.

Kynkäänniemi, T., Karras, T., Laine, S., Lehtinen, J., and Aila, T. (2019). Improved

171

precision and recall metric for assessing generative models. Advances in Neural
Information Processing Systems, 32.

Kynkäänniemi, T., Karras, T., Aittala, M., Aila, T., and Lehtinen, J. (2023). The
role of imagenet classes in fréchet inception distance. In Proc. ICLR.

Lake, B. M., Salakhutdinov, R., and Tenenbaum, J. B. (2015). Human-level concept
learning through probabilistic program induction. Science, 350(6266):1332–1338.

Larsen, A. B. L., Sønderby, S. K., Larochelle, H., and Winther, O. (2016). Autoencod-
ing beyond pixels using a learned similarity metric. In International Conference
on Machine Learning, pages 1558–1566. PMLR.

Lasserre, J. A., Bishop, C. M., and Minka, T. P. (2006). Principled hybrids of gener-
ative and discriminative models. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, volume 1, pages 87–94. IEEE.

Lazarow, J., Jin, L., and Tu, Z. (2017). Introspective neural networks for generative
modeling. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 2774–2783.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324.

Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-Based Learning
Applied to Document Recognition. Proceedings of the IEEE.

LeCun, Y., Cortes, C., and Burges, C. (2010). MNIST handwritten digit database.
ATT Labs [Online]. Available: http://yann.lecun.com/exdb/mnist.

Lee, K., Xu, W., Fan, F., and Tu, Z. (2018). Wasserstein introspective neural net-
works. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 3702–3711.

Lee, S.-H., Kim, J.-H., Chung, H., and Lee, S.-W. (2021). Voicemixer: Adver-
sarial voice style mixup. Advances in Neural Information Processing Systems,
34:294–308.

Lesort, T., Caselles-Dupré, H., Garcia-Ortiz, M., Stoian, A., and Filliat, D. (2019).
Generative Models from the perspective of Continual Learning. In IJCNN.

Li, Z. and Hoiem, D. (2017). Learning without forgetting. IEEE transactions on
pattern analysis and machine intelligence, 40(12):2935–2947.

Ling, H. and Okada, K. (2006). Diffusion distance for histogram comparison. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition, volume 1, pages 246–253. IEEE.

Liu, X., Wu, C., Menta, M., Herranz, L., Raducanu, B., Bagdanov, A. D., Jui, S.,
and de Weijer, J. v. (2020). Generative feature replay for class-incremental learn-
ing. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops, pages 226–227.

172

Liu, Z., Luo, P., Wang, X., and Tang, X. (2015a). Deep learning face attributes in
the wild. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pages 3730–3738.

Liu, Z., Luo, P., Wang, X., and Tang, X. (2015b). Deep learning face attributes in
the wild. In Proceedings of the IEEE/CVF International Conference on Computer
Vision.

Lopez, R., Regier, J., Cole, M. B., Jordan, M. I., and Yosef, N. (2018). Deep genera-
tive modeling for single-cell transcriptomics. Nature methods, 15(12):1053–1058.

Lopez-Paz, D. and Ranzato, M. (2017a). Gradient episodic memory for continual
learning. Advances in Neural Information Processing Systems, 30:6467–6476.

Lopez-Paz, D. and Ranzato, M. (2017b). Gradient Episodic Memory for Continual
Learning. In Advances in Neural Information Processing Systems.

Loshchilov, I. and Hutter, F. (2017). Decoupled weight decay regularization. Inter-
national Conference on Learning Representations.

Losing, V., Hammer, B., and Wersing, H. (2017). Self-adjusting memory: How to
deal with diverse drift types. In Proceedings of the Twenty-Sixth International
Joint Conference on Artificial Intelligence, IJCAI-17, pages 4899–4903.

Maaløe, L., Fraccaro, M., Liévin, V., and Winther, O. (2019). Biva: A very deep
hierarchy of latent variables for generative modeling. Advances in Neural Infor-
mation Processing Systems, 32.

Maaløe, L., Fraccaro, M., and Winther, O. (2017). Semi-supervised generation with
cluster-aware generative models. arXiv preprint arXiv:1704.00637.

Makhzani, A., Shlens, J., Jaitly, N., Goodfellow, I., and Frey, B. (2015). Adversarial
autoencoders. arXiv preprint arXiv:1511.05644.

Mallya, A., Davis, D., and Lazebnik, S. (2018). Piggyback: Adapting a Single Net-
work to Multiple Tasks by Learning to Mask Weights. In ECCV.

Mallya, A. and Lazebnik, S. (2018). Packnet: Adding Multiple Tasks to a Single
Network by Iterative Pruning. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition.

Masarczyk, W., Deja, K., and Trzcinski, T. (2021). On robustness of generative
representations against catastrophic forgetting. In Mantoro, T., Lee, M., Ayu,
M. A., Wong, K. W., and Hidayanto, A. N., editors, Neural Information Processing,
pages 325–333, Cham. Springer International Publishing.

Masse, N. Y., Grant, G. D., and Freedman, D. J. (2018). Alleviating catastrophic
forgetting using context-dependent gating and synaptic stabilization. PNAS.

Mathieu, E., Rainforth, T., Siddharth, N., and Teh, Y. (2018). Disentangling dis-
entanglement in variational autoencoders. International Conference on Machine
Learning.

173

Mena, F. and Nanculef, R. (2019). A Binary Variational Autoencoder for Hashing.
In CIARP.

Mialon, G., Dessì, R., Lomeli, M., Nalmpantis, C., Pasunuru, R., Raileanu,
R., Rozière, B., Schick, T., Dwivedi-Yu, J., Celikyilmaz, A., Grave, E., Le-
Cun, Y., and Scialom, T. (2023). Augmented language models: a survey.
10.48550/arXiv.2302.07842.

Mikuni, V. and Nachman, B. (2022). Score-based generative models for calorimeter
shower simulation. Phys. Rev. D, 106:092009.

Müller, G. E. and Pilzecker, A. (1900). Experimentelle beiträge zur lehre vom
gedächtniss, volume 1. JA Barth.

Mundt, M., Hong, Y., Pliushch, I., and Ramesh, V. (2023). A wholistic view of con-
tinual learning with deep neural networks: Forgotten lessons and the bridge to
active and open world learning. Neural Networks.

Mundt, M., Hong, Y. W., Pliushch, I., and Ramesh, V. (2020a). A Wholistic View
of Continual Learning with Deep Neural Networks: Forgotten Lessons and the
Bridge to Active and Open World Learning.

Mundt, M., Majumder, S., Pliushch, I., Hong, Y. W., and Ramesh, V. (2020b). Unified
Probabilistic Deep Continual Learning through Generative Replay and Open Set
Recognition.

Nalisnick, E., Matsukawa, A., Teh, Y. W., Gorur, D., and Lakshminarayanan, B.
(2019a). Do deep generative models know what they don’t know? International
Conference on Learning Representations.

Nalisnick, E., Matsukawa, A., Teh, Y. W., Gorur, D., and Lakshminarayanan, B.
(2019b). Hybrid models with deep and invertible features. In International Con-
ference on Machine Learning, pages 4723–4732. PMLR.

Nash, C., Menick, J., Dieleman, S., and Battaglia, P. W. (2021). Generating images
with sparse representations. International Conference on Machine Learning.

Nguyen, C. V., Li, Y., Bui, T. D., and Turner, R. E. (2018). Variational continual
learning. In International Conference on Learning Representations.

Nichol, A. Q. and Dhariwal, P. (2021). Improved denoising diffusion probabilis-
tic models. In International Conference on Machine Learning, pages 8162–8171.
PMLR.

Oord, A. v. d., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A., Kalch-
brenner, N., Senior, A., and Kavukcuoglu, K. (2016). Wavenet: A generative model
for raw audio. In 9th ISCA Speech Synthesis Workshop.

OpenAI (2023). Gpt-4 technical report. ARXIV.ORG.
Paganini, M., de Oliveira, L., and Nachman, B. (2018). Calogan: Simulating 3d

high energy particle showers in multilayer electromagnetic calorimeters. Physical

174

Review D, 97(1):014021.
Parisi, G. I., Kemker, R., Part, J. L., Kanan, C., and Wermter, S. (2019). Continual

lifelong learning with neural networks: A review. Neural networks, 113:54–71.
Pascanu, R. (2021). Continual learning the challenge. ICML Workshop on Human

in the Loop Learning (HILL).
Patrini, G., Berg, R. v. d., Forre, P., Carioni, M., Bhargav, S., Welling, M., Genewein,

T., and Nielsen, F. (2019). Sinkhorn autoencoders. 35th Conference on Uncertainty
in Artificial Intelligence.

Perugachi-Diaz, Y., Tomczak, J., and Bhulai, S. (2021). Invertible densenets with
concatenated lipswish. Advances in Neural Information Processing Systems,
34:17246–17257.

Pidhorskyi, S., Adjeroh, D. A., and Doretto, G. (2020). Adversarial latent autoen-
coders. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 14104–14113.

Pol, A. A., Cerminara, G., Germain, C., Pierini, M., and Seth, A. (2019). Detector
monitoring with artificial neural networks at the cms experiment at the cern large
hadron collider. Computing and Software for Big Science, 3:1–13.

Popov, V., Vovk, I., Gogoryan, V., Sadekova, T., and Kudinov, M. (2021). Grad-tts:
A diffusion probabilistic model for text-to-speech. In International Conference on
Machine Learning, pages 8599–8608. PMLR.

Prabhu, A., Torr, P. H., and Dokania, P. K. (2020). Gdumb: A simple approach that
questions our progress in continual learning. In Proceedings of the European
Conference on Computer Vision (ECCV), pages 524–540. Springer.

Qian, K., Zhang, Y., Chang, S., Hasegawa-Johnson, M., and Cox, D. (2020). Unsu-
pervised speech decomposition via triple information bottleneck. In International
Conference on Machine Learning, pages 7836–7846. PMLR.

Qu, H., Rahmani, H., Xu, L., Williams, B., and Liu, J. (2021). Recent ad-
vances of continual learning in computer vision: An overview. arXiv preprint
arXiv:2109.11369.

Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G.,
Askell, A., Mishkin, P., Clark, J., et al. (2021). Learning transferable visual mod-
els from natural language supervision. In International Conference on Machine
Learning, pages 8748–8763. PMLR.

Radford, A., Metz, L., and Chintala, S. (2015). Unsupervised representation learn-
ing with deep convolutional generative adversarial networks. arXiv preprint
arXiv:1511.06434.

Rajaraman, S., Antani, S. K., Poostchi, M., Silamut, K., Hossain, M. A., Maude,
R. J., Jaeger, S., and Thoma, G. R. (2018). Pre-trained convolutional neural net-

175

works as feature extractors toward improved malaria parasite detection in thin
blood smear images. PeerJ, 6:e4568.

Ramapuram, J., Gregorova, M., and Kalousis, A. (2020). Lifelong generative mod-
eling. Neurocomputing, 404:381–400.

Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., and Chen, M. (2022). Hier-
archical text-conditional image generation with clip latents. arXiv preprint
arXiv:2204.06125.

Rao, D., Visin, F., Rusu, A., Pascanu, R., Teh, Y. W., and Hadsell, R. (2019). Con-
tinual unsupervised representation learning. Advances in Neural Information
Processing Systems, 32.

Rebuffi, S., Kolesnikov, A., Sperl, G., and Lampert, C. H. (2017). iCaRL: Incremen-
tal Classifier and Representation Learning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition.

Rezende, D. and Mohamed, S. (2015). Variational inference with normalizing flows.
In International Conference on Machine Learning, pages 1530–1538. PMLR.

Robins, A. (1995). Catastrophic forgetting, rehearsal and pseudorehearsal. Connec-
tion Science, 7(2):123–146.

Rolnick, D., Ahuja, A., Schwarz, J., Lillicrap, T., and Wayne, G. (2019). Experience
Replay for Continual Learning. In Advances in Neural Information Processing
Systems.

Rombach, R., Blattmann, A., Lorenz, D., Esser, P., and Ommer, B. (2022).
High-resolution image synthesis with latent diffusion models. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
10684–10695.

Ronneberger, O., Fischer, P., and Brox, T. (2015). U-net: Convolutional networks for
biomedical image segmentation. In International Conference on Medical image
computing and computer-assisted intervention, pages 234–241. Springer.

Rostami, M., Kolouri, S., and Pilly, P. K. (2019). Complementary learning for over-
coming catastrophic forgetting using experience replay. In Proceedings of the 28th
International Joint Conference on Artificial Intelligence, pages 3339–3345.

Rusu, A. A., Rabinowitz, N. C., Desjardins, G., Soyer, H., Kirkpatrick, J.,
Kavukcuoglu, K., Pascanu, R., and Hadsell, R. (2016). Progressive Neural Net-
works. arXiv:1606.04671.

Saharia, C., Chan, W., Saxena, S., Li, L., Whang, J., Denton, E., Ghasemipour,
S. K. S., Ayan, B. K., Mahdavi, S. S., Lopes, R. G., et al. (2022). Photorealistic
text-to-image diffusion models with deep language understanding. Advances in
Neural Information Processing Systems.

Sajjadi, M. S., Bachem, O., Lucic, M., Bousquet, O., and Gelly, S. (2018). Assess-

176

ing generative models via precision and recall. Advances in Neural Information
Processing Systems.

Sakurada, M. and Yairi, T. (2014). Anomaly detection using autoencoders with non-
linear dimensionality reduction. In Proceedings of the MLSDA 2014 2nd work-
shop on machine learning for sensory data analysis, pages 4–11.

Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., and Chen, X.
(2016). Improved techniques for training gans. Advances in Neural Information
Processing Systems, 29.

Salimans, T. and Ho, J. (2022). Progressive distillation for fast sampling of diffusion
models. In International Conference on Learning Representations.

Scardapane, S., Uncini, A., et al. (2020). Pseudo-rehearsal for continual learning
with normalizing flows. In 4th Lifelong Machine Learning Workshop at ICML
2020.

Shin, H., Lee, J. K., Kim, J., and Kim, J. (2017). Continual Learning with Deep
Generative Replay. In Advances in Neural Information Processing Systems.

Shmelkov, K., Schmid, C., and Alahari, K. (2018). How good is my gan? In Proceed-
ings of the European Conference on Computer Vision (ECCV), pages 213–229.

Sietsma, J. and Dow, R. J. (1991). Creating artificial neural networks that general-
ize. Neural networks, 4(1):67–79.

Simidjievski, N., Bodnar, C., Tariq, I., Scherer, P., Andres Terre, H., Shams, Z., Jam-
nik, M., and Liò, P. (2019). Variational autoencoders for cancer data integration:
design principles and computational practice. Frontiers in genetics, 10:1205.

Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., and Ganguli, S. (2015). Deep
unsupervised learning using nonequilibrium thermodynamics. In International
Conference on Machine Learning, pages 2256–2265. PMLR.

Sohn, K., Lee, H., and Yan, X. (2015). Learning structured output representation
using deep conditional generative models. In Advances in Neural Information
Processing Systems, pages 3483–3491.

Song, J., Meng, C., and Ermon, S. (2020a). Denoising diffusion implicit models. In
International Conference on Learning Representations.

Song, Y. and Ermon, S. (2019). Generative modeling by estimating gradients of the
data distribution. Advances in Neural Information Processing Systems, 32.

Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Ermon, S., and Poole, B.
(2020b). Score-based generative modeling through stochastic differential equa-
tions. In International Conference on Learning Representations.

Stoianov, I., Maisto, D., and Pezzulo, G. (2022). The hippocampal formation as a hi-
erarchical generative model supporting generative replay and continual learning.
Progress in Neurobiology, 217:102329.

177

Strub, F., Gaudel, R., and Mary, J. (2016). Hybrid recommender system based on au-
toencoders. In Proceedings of the 1st workshop on deep learning for recommender
systems, pages 11–16.

Strulab, D., Santin, G., Lazaro, D., Breton, V., and Morel, C. (2003). Gate (geant4
application for tomographic emission): a pet/spect general-purpose simulation
platform. Nuclear Physics B-Proceedings Supplements, 125:75–79.

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and Wojna, Z. (2015). Rethink-
ing the inception architecture for computer vision. Computer Vision and Pattern
Recognition.

Szymczak, P., Możejko, M., Grzegorzek, T., Jurczak, R., Bauer, M., Neubauer, D.,
Sikora, K., Michalski, M., Sroka, J., Setny, P., et al. (2022). Discovering highly po-
tent antimicrobial peptides with deep generative model hydramp. bioRxiv, pages
2022–01.

Tashiro, Y., Song, J., Song, Y., and Ermon, S. (2021). Csdi: Conditional score-based
diffusion models for probabilistic time series imputation. In Advances in Neural
Information Processing Systems, volume 34, pages 24804–24816. Curran Asso-
ciates, Inc.

Tempel, B. L., Bonini, N., Dawson, D. R., and Quinn, W. G. (1983). Reward learning
in normal and mutant drosophila. PNAS, 80(5):1482–1486.

Thai, A., Stojanov, S., Rehg, I., and Rehg, J. M. (2021). Does continual learning=
catastrophic forgetting. arXiv preprint arXiv:2101.07295.

Thandiackal, K., Portenier, T., Giovannini, A., Gabrani, M., and Goksel, O. (2021).
Generative feature-driven image replay for continual learning. arXiv preprint
arXiv:2106.05350.

Theis, L., Shi, W., Cunningham, A., and Huszár, F. (2017). Lossy image compression
with compressive autoencoders. International Conference on Learning Represen-
tations.

Tilaro, F., Bradu, B., Gonzalez-Berges, M., Roshchin, M., and Varela, F. (2018).
Model Learning Algorithms for Anomaly Detection in CERN Control Systems.
In ICALEPCS.

Tinchev, G., Czarnowska, M., Deja, K., Yanagisawa, K., and Cotescu, M. (2023).
Modelling low-resource accents without accent-specific tts frontend. arXiv
preprint arXiv:2301.04606.

Tits, N., Wang, F., El Haddad, K., Pagel, V., and Dutoit, T. (2019). Visualization
and interpretation of latent spaces for controlling expressive speech synthesis
through audio analysis. Proc. Interspeech 2019, pages 4475–4479.

Tolstikhin, I., Bousquet, O., Gelly, S., and Schoelkopf, B. (2017). Wasserstein
auto-encoders. International Conference on Learning Representations.

178

Tomczak, J. and Welling, M. (2018). Vae with a vampprior. In International Con-
ference on Artificial Intelligence and Statistics, pages 1214–1223.

Tomczak, J. M. (2022). Deep Generative Modeling. Springer Cham.
Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux, M.-A., Lacroix, T., Roz-

ière, B., Goyal, N., Hambro, E., Azhar, F., Rodriguez, A., Joulin, A., Grave, E.,
and Lample, G. (2023). Llama: Open and efficient foundation language models.
ARXIV.ORG.

Tschannen, M., Bachem, O., and Lucic, M. (2018). Recent advances in
autoencoder-based representation learning. arXiv preprint arXiv:1812.05069.

Tulyakov, S., Fitzgibbon, A., and Nowozin, S. (2017). Hybrid vae: Improving deep
generative models using partial observations. arXiv preprint arXiv:1711.11566.

Tzen, B. and Raginsky, M. (2019). Neural stochastic differential equations: Deep
latent gaussian models in the diffusion limit. arXiv preprint arXiv:1905.09883.

Vahdat, A. and Kautz, J. (2020). Nvae: A deep hierarchical variational autoencoder.
Advances in Neural Information Processing Systems, 33:19667–19679.

Vahdat, A., Kreis, K., and Kautz, J. (2021). Score-based generative modeling in
latent space. Advances in Neural Information Processing Systems, 34.

Van de Ven, G. M., Siegelmann, H. T., and Tolias, A. S. (2020). Brain-inspired replay
for continual learning with artificial neural networks. Nature communications,
11(1):4069.

van de Ven, G. M. and Tolias, A. S. (2018). Generative replay with feedback connec-
tions as a general strategy for continual learning. arXiv:1809.10635.

Van de Ven, G. M. and Tolias, A. S. (2019). Three scenarios for continual learning.
NeurIPS - Continual Learning workshop.

van den Oord, A., Vinyals, O., and Kavukcuoglu, K. (2017). Neural Discrete Repre-
sentation Learning. In Advances in Neural Information Processing Systems.

Vincent, P., Larochelle, H., Bengio, Y., and Manzagol, P.-A. (2008). Extracting and
composing robust features with denoising autoencoders. In Proceedings of the
25th International Conference on Machine Learning, pages 1096–1103.

Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., and Manzagol, P.-A. (2010).
Stacked denoising autoencoders: Learning useful representations in a deep net-
work with a local denoising criterion. Journal of machine learning research,
11(Dec):3371–3408.

von Oswald, J., Henning, C., Sacramento, J., and Grewe, B. F. (2019). Continual
learning with hypernetworks. In International Conference on Learning Represen-
tations.

Wang, D., Deng, L., Yeung, Y. T., Chen, X., Liu, X., and Meng, H. (2021a). Vqmivc:
Vector quantization and mutual information-based unsupervised speech repre-

179

sentation disentanglement for one-shot voice conversion. Interspeech.
Wang, L., Lei, B., Li, Q., Su, H., Zhu, J., and Zhong, Y. (2021b). Triple-memory

networks: A brain-inspired method for continual learning. IEEE Transactions
on Neural Networks and Learning Systems, 33(5):1925–1934.

Wang, S., Li, X., Sun, J., and Xu, Z. (2021c). Training networks in null space of
feature covariance for continual learning. In Proceedings of the IEEE/CVF con-
ference on Computer Vision and Pattern Recognition, pages 184–193.

Wang, Y., Yao, H., and Zhao, S. (2016). Auto-encoder based dimensionality reduc-
tion. Neurocomputing, 184:232–242.

Wang, Z., Simoncelli, E. P., and Bovik, A. C. (2003). Multiscale structural similarity
for image quality assessment. In The Thrity-Seventh Asilomar Conference on
Signals, Systems & Computers, 2003, volume 2, pages 1398–1402. IEEE.

Wehenkel, A. and Louppe, G. (2021). Diffusion priors in variational autoencoders.
In ICML Workshop on Invertible Neural Networks, Normalizing Flows, and Ex-
plicit Likelihood Models.

Wei, R. and Mahmood, A. (2020). Recent advances in variational autoencoders
with representation learning for biomedical informatics: A survey. Ieee Access,
9:4939–4956.

Wen, Y., Tran, D., and Ba, J. (2020). BatchEnsemble: an Alternative Approach to
Efficient Ensemble and Lifelong Learning. In International Conference on Learn-
ing Representations.

Wortsman, M., Ramanujan, V., Liu, R., Kembhavi, A., Rastegari, M., Yosinski, J.,
and Farhadi, A. (2020). Supermasks in Superposition. In Advances in Neural
Information Processing Systems.

Wu, C., Herranz, L., Liu, X., Wang, Y., van de Weijer, J., and Raducanu, B. (2018).
Memory replay gans: Learning to generate new categories without forgetting. In
Advances in Neural Information Processing Systems.

Wu, S., Wang, J., Ping, W., Nie, W., and Xiao, C. (2023). Defending against adver-
sarial audio via diffusion model. In International Conference on Learning Repre-
sentations.

Xiang, Y., Fu, Y., Ji, P., and Huang, H. (2019). Incremental Learning Using Con-
ditional Adversarial Networks. In Proceedings of the IEEE/CVF International
Conference on Computer Vision.

Xiao, H., Rasul, K., and Vollgraf, R. (2017). Fashion-MNIST: a Novel Image Dataset
for Benchmarking Machine Learning Algorithms. arXiv:1708.07747.

Xiao, Z., Yan, Q., and Amit, Y. (2019). Generative latent flow. arXiv preprint
arXiv:1905.10485.

Xu, J. and Zhu, Z. (2018). Reinforced Continual Learning. In Advances in Neural

180

Information Processing Systems.
Yan, S., Xie, J., and He, X. (2021). Der: Dynamically expandable representation

for class incremental learning. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 3014–3023.

Yang, B., Luo, W., and Urtasun, R. (2018). Pixor: Real-time 3d Object Detection
from Point Clouds. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition.

Yang, L.-C., Chou, S.-Y., and Yang, Y.-H. (2017). Midinet: A convolutional genera-
tive adversarial network for symbolic-domain music generation. arXiv preprint
arXiv:1703.10847.

Yang, W., Kirichenko, P., Goldblum, M., and Wilson, A. G. (2022a). Chroma-vae:
Mitigating shortcut learning with generative classifiers. Advances in Neural In-
formation Processing Systems.

Yang, X. and Ji, S. (2021). Jem++: Improved techniques for training jem. In Pro-
ceedings of the IEEE/CVF International Conference on Computer Vision, pages
6494–6503.

Yang, X., Shih, S.-M., Fu, Y., Zhao, X., and Ji, S. (2022b). Your vit is secretly a hybrid
discriminative-generative diffusion model. arXiv preprint arXiv:2208.07791.

Ye, F. and Bors, A. G. (2020). Learning latent representations across multiple data
domains using lifelong vaegan. In Proceedings of the European Conference on
Computer Vision (ECCV), pages 777–795. Springer.

Yoon, J., Yang, E., Lee, J., and Hwang, S. J. (2018). Lifelong Learning with Dynam-
ically Expandable Networks. In International Conference on Learning Represen-
tations.

Yuan, S., Cheng, P., Zhang, R., Hao, W., Gan, Z., and Carin, L. (2021). Improv-
ing zero-shot voice style transfer via disentangled representation learning. In
International Conference on Learning Representations.

Zajac, M., Deja, K., Kuzina, A., Tomczak, J. M., Trzciski, T., Shkurti, F., and Mio,
P. (2023). Exploring continual learning of diffusion models. arXiv preprint arXiv:
Arxiv-2303.15342.

Zamorski, M., Zieba, M., Klukowski, P., Nowak, R., Kurach, K., Stokowiec, W., and
Trzcinski, T. (2020). Adversarial Autoencoders for Compact Representations of
3D Point Clouds. Comput. Vis. Image Underst.

Zeng, G., Chen, Y., Cui, B., and Yu, S. (2019). Continual learning of
context-dependent processing in neural networks. Nature Machine Intelligence,
1(8):364–372.

Zenke, F., Poole, B., and Ganguli, S. (2017a). Continual learning through synaptic
intelligence. In International Conference on Machine Learning, pages 3987–3995.

181

PMLR.
Zenke, F., Poole, B., and Ganguli, S. (2017b). Continual Learning Through Synap-

tic Intelligence. In Proceedings of the 34th International Conference on Machine
Learning.

Zhang, C., Song, N., Lin, G., Zheng, Y., Pan, P., and Xu, Y. (2021). Few-shot
incremental learning with continually evolved classifiers. In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition, pages
12455–12464.

Zhang, Q. and Zhang, L. (2018). Convolutional adaptive denoising autoencoders for
hierarchical feature extraction. Frontiers of Computer Science, 12(6):1140–1148.

Zhou, C. and Paffenroth, R. C. (2017). Anomaly detection with robust deep autoen-
coders. In Proceedings of the 23rd ACM SIGKDD international conference on
knowledge discovery and data mining, pages 665–674.

Zhu, J., Zhao, D., Zhang, B., and Zhou, B. (2022). Disentangled inference for gans
with latently invertible autoencoder. International Journal of Computer Vision.

Zhu, J.-Y., Krähenbühl, P., Shechtman, E., and Efros, A. A. (2016). Generative vi-
sual manipulation on the natural image manifold. In Proceedings of the European
Conference on Computer Vision (ECCV), pages 597–613. Springer.

Ziegler, Z. M. and Rush, A. M. (2019). Latent normalizing flows for discrete se-
quences. International Conference on Machine Learning.

Zoglauer, A., Andritschke, R., and Schopper, F. (2006). Megalib–the medium energy
gamma-ray astronomy library. New Astronomy Reviews, 50(7-8):629–632.

182

	=Acknowledgements
	Introduction
	Research Questions
	Thesis Contribution
	Generative autoencoder with limited latent space regularisation
	Analysis of the generative process in DDGMs
	Data representation in DDGMs
	Binary data representations for image compression with autoencoder
	Continuous knowledge consolidation in variational autoencoder's latent space

	Publications Not Included in the Dissertation

	Background
	Generative Autoencoders
	Variational Autoencoder

	Generative Adversarial Networks
	Diffusion-Based Deep Generative Models (DDGMs)

	Related Works
	Generative Autoencoders
	Latent space regularisation in generative autoencoders
	Generative autoencoders with adversarial training
	Hierarchical Variational Autoencoders
	Latent space geometry
	Application of data representations learned with generative models

	Diffusion Based Deep Generative Models
	Connection to hierarchical Variational Autoencoders
	DDGMs and data representation

	Generative Models for High Energy Physics
	Evaluation of Generative Models

	End-to-End Sinkhorn Autoencoder With Noise Generator
	Preface
	Abstract
	Introduction
	Related Works
	Sinkhorn Autoencoder with Noise Generator
	Reconstruction loss
	Sinkhorn loss
	End-to-end Sinkhorn Autoencoder objective
	Conditional Sinkhorn objective

	Experiments
	Conclusions

	On Analyzing Generative and Denoising Capabilities of Diffusion-based Deep Generative Models
	Preface
	Abstract
	Introduction
	Background
	Denoising Auto-Encoders
	Related Works
	An Analysis of DDGMs
	DAED: Denoising Auto-Encoder with Diffusion
	Experiments
	Is there a transition in functionality of the backward diffusion process that switches from generating to denoising?
	How does splitting DDGMs into generative and denoising parts affect the performance?
	Does the noise removal in DDGMs generalize to other data distributions?

	Conclusion
	Appendix
	Additional experiments
	Signal-to-noise ratio detailed plots
	Examples of generations
	Training Dynamics
	Training Hyperparameters
	Computational details
	A comparison between DAED and DDGMs with more parameters

	Learning Data Representations with Joint Diffusion Models
	Preface
	Abstract
	Introduction
	Background
	Related Work
	Diffusion Models Learn Data Representations
	UNet representations are useful for prediction
	Diffusion models learn features of increasing granularity

	Method
	Joint Diffusion Models: DDGMs with classifiers
	An alternative training of joint diffusion models
	Conditional sampling in joint diffusion models

	Experiments
	Predictive performance of joint diffusion models
	Generative performance of joint diffusion models
	A comparison to state-of-the-art approaches
	Semi-supervised learning of joint diffusion models
	Domain adaptation with diffusion-based fine-tuning
	Visual Counterfactual Explanations

	Conclusion
	Appendix
	Training details and hyperparameters
	Domain adaptation
	Additional results: Conditional generations with optimised representations
	Additional results: Counterfactual image generation

	Background – Continual Learning
	Continual Learning Methods
	Methods based on regularisation
	Methods based on dynamic architectures
	Methods based on replaying

	Continual Learning of Generative Models
	Knowledge Consolidation with Generative Modelling

	BinPlay: A Binary Latent Autoencoder for Generative Replay Continual Learning
	Preface
	Abstract
	Introduction
	Related Works
	Method
	Binary latent autoencoder
	Binary codes definition
	Binary codes assignment
	Training

	Experimental Study
	Results
	Future work

	Conclusions

	Multiband VAE: Latent Space Alignment for Knowledge Consolidation in Continual Learning
	Preface
	Abstract
	Introduction
	Related Works
	Method
	Knowledge Acquisition – Local Training
	Shared Knowledge Consolidation
	Controlled Forgetting

	Experiments
	Evaluation Setup
	Evaluation
	Memory Requirements and Complexity

	Conclusion
	Appendix
	Discussion on the task index usage in generative continual learning
	Models architectures
	Real life CERN dataset
	Two latents Variational Autoencoder
	Analysis of binary latent space
	Visualisation of generated samples

	Discussion and Final Remarks
	Future Outlook of Generative Artificial Intelligence
	Open Questions
	Conclusion

	Bibliography

